-
Notifications
You must be signed in to change notification settings - Fork 507
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Tanyo Kwok
committed
Jul 25, 2022
1 parent
b80ce79
commit cf04c96
Showing
5 changed files
with
269 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,196 @@ | ||
//===----------------------------------------------------------------------===// | ||
// | ||
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. | ||
// See https://llvm.org/LICENSE.txt for license information. | ||
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception | ||
// Also available under a BSD-style license. See LICENSE. | ||
// | ||
//===----------------------------------------------------------------------===// | ||
|
||
#include "torch-mlir/Conversion/TorchToMhlo/TorchToMhlo.h" | ||
|
||
#include "../PassDetail.h" | ||
#include "./PopulatePatterns.h" | ||
#include "mlir-hlo/Dialect/mhlo/IR/hlo_ops.h" | ||
#include "mlir/Dialect/Arithmetic/IR/Arithmetic.h" | ||
#include "mlir/Dialect/Tensor/IR/Tensor.h" | ||
#include "torch-mlir/Conversion/Utils/Utils.h" | ||
#include "torch-mlir/Dialect/Torch/IR/TorchDialect.h" | ||
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h" | ||
#include "torch-mlir/Dialect/Torch/Utils/Utils.h" | ||
#include "torch-mlir/Dialect/TorchConversion/IR/TorchConversionOps.h" | ||
#include <iostream> | ||
#include <numeric> | ||
|
||
using namespace mlir; | ||
using namespace mlir::torch; | ||
using namespace mlir::torch::Torch; | ||
|
||
#ifdef TORCH_MLIR_ENABLE_MHLO_TRUNC_DIMSIZE_TO_I32 | ||
static constexpr size_t kMhloDimSizeBits = 32; | ||
#else | ||
static constexpr size_t kMhloDimSizeBits = 64; | ||
#endif | ||
|
||
namespace { | ||
Value gatherTensorAlongSingleAxis(PatternRewriter &rewriter, Operation *op, | ||
Value input, Value indices, int64_t axis) { | ||
auto loc = op->getLoc(); | ||
Type intType = rewriter.getIntegerType(kMhloDimSizeBits); | ||
Value one = rewriter.create<arith::ConstantOp>( | ||
loc, rewriter.getIntegerAttr(intType, 1)); | ||
|
||
// sliceSizes | ||
auto inputRankTy = input.getType().dyn_cast<RankedTensorType>(); | ||
auto inputRank = inputRankTy.getRank(); | ||
SmallVector<Value, 4> sliceSizes; | ||
sliceSizes.reserve(inputRank); | ||
for (int64_t r = 0; r < inputRank; ++r) { | ||
if (r == axis) { | ||
sliceSizes.push_back(one); | ||
} else { | ||
sliceSizes.push_back(rewriter.create<arith::IndexCastOp>( | ||
loc, intType, rewriter.create<tensor::DimOp>(loc, input, r))); | ||
} | ||
} | ||
auto sliceSizesTensor = | ||
rewriter.create<tensor::FromElementsOp>(loc, sliceSizes); | ||
|
||
// offsetDims | ||
SmallVector<int64_t, 4> offsetDims; | ||
offsetDims.reserve(inputRank); | ||
for (int64_t r = 0; r < axis; ++r) { | ||
offsetDims.push_back(r); | ||
} | ||
auto indicesRankTy = indices.getType().dyn_cast<RankedTensorType>(); | ||
auto indicesRank = indicesRankTy.getRank(); | ||
for (int64_t r = axis + 1; r < inputRank; ++r) { | ||
offsetDims.push_back(r + indicesRank - 1); | ||
} | ||
|
||
// collapsedSliceDims | ||
SmallVector<int64_t, 4> collapsedSliceDims(1, axis); | ||
// startIndexMap | ||
SmallVector<int64_t, 4> startIndexMap(1, axis); | ||
// indexVecDim | ||
int64_t indexVecDim = indicesRank; | ||
auto dimsAttr = mhlo::GatherDimensionNumbersAttr::get( | ||
rewriter.getContext(), | ||
/*offsetDims=*/offsetDims, | ||
/*collapsedSliceDims=*/collapsedSliceDims, | ||
/*startIndexMap=*/startIndexMap, | ||
/*indexVecDim=*/indexVecDim); | ||
|
||
// outputShape = input.shape[:axis] + indices.shape + | ||
// input.shape[axis + 1:] | ||
auto inputShape = inputRankTy.getShape(); | ||
auto indicesShape = indicesRankTy.getShape(); | ||
SmallVector<int64_t, 4> outputShape(inputShape.begin(), | ||
inputShape.begin() + axis); | ||
outputShape.insert(outputShape.end(), indicesShape.begin(), | ||
indicesShape.end()); | ||
outputShape.insert(outputShape.end(), inputShape.begin() + axis + 1, | ||
inputShape.end()); | ||
|
||
// create output tensor type | ||
auto outputTy = | ||
RankedTensorType::get(outputShape, inputRankTy.getElementType()); | ||
return rewriter | ||
.create<mhlo::DynamicGatherOp>(loc, outputTy, input, indices, | ||
sliceSizesTensor, dimsAttr) | ||
.getResult(); | ||
} | ||
|
||
template <typename AtenOpT> | ||
class ConvertAtenOp : public OpConversionPattern<AtenOpT> { | ||
public: | ||
using OpConversionPattern<AtenOpT>::OpConversionPattern; | ||
using OpAdaptor = typename AtenOpT::Adaptor; | ||
LogicalResult | ||
matchAndRewrite(AtenOpT op, OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const override; | ||
}; | ||
|
||
// Ref: https://pytorch.org/docs/stable/generated/torch.nn.functional.embedding.html | ||
// padding_idx (int, optional) | ||
// – If specified, the entries at padding_idx do not contribute to the gradient; | ||
// therefore, the embedding vector at padding_idx is not updated during training, | ||
// i.e. it remains as a fixed “pad”. | ||
// scale_grad_by_freq (boolean, optional) | ||
// – If given, this will scale gradients by the inverse of frequency of the | ||
// words in the mini-batch. Default False. | ||
// sparse (bool, optional) | ||
// – If True, gradient w.r.t. weight matrix will be a sparse tensor. | ||
template <> | ||
LogicalResult ConvertAtenOp<AtenEmbeddingOp>::matchAndRewrite( | ||
AtenEmbeddingOp op, OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const { | ||
auto weight = adaptor.weight(); | ||
auto weightTy = weight.getType().template cast<RankedTensorType>(); | ||
if (!weightTy) | ||
return op.emitError("only ranked tensor types are supported"); | ||
|
||
int64_t padding_idx; | ||
if (!matchPattern(op.padding_idx(), m_TorchConstantInt(&padding_idx))) | ||
return rewriter.notifyMatchFailure( | ||
op, "only constant padding_idx is currently supported"); | ||
|
||
bool scale_grad_by_freq; | ||
if (!matchPattern(op.scale_grad_by_freq(), | ||
m_TorchConstantBool(&scale_grad_by_freq))) | ||
return rewriter.notifyMatchFailure( | ||
op, "only constant scale_grad_by_freq is currently supported"); | ||
if (scale_grad_by_freq) | ||
return rewriter.notifyMatchFailure( | ||
op, "scale gradients is currently not supported"); | ||
bool sparse; | ||
if (!matchPattern(op.sparse(), m_TorchConstantBool(&sparse))) | ||
return rewriter.notifyMatchFailure( | ||
op, "only constant sparse is currently supported"); | ||
if (sparse) | ||
return rewriter.notifyMatchFailure( | ||
op, "sparse gradients is currently not supported"); | ||
|
||
Value output = | ||
gatherTensorAlongSingleAxis(rewriter, op, weight, adaptor.indices(), 0); | ||
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>( | ||
op, getTypeConverter()->convertType(op.getType()), output); | ||
|
||
return success(); | ||
} | ||
|
||
template <> | ||
LogicalResult ConvertAtenOp<AtenIndexSelectOp>::matchAndRewrite( | ||
AtenIndexSelectOp op, OpAdaptor adaptor, | ||
ConversionPatternRewriter &rewriter) const { | ||
auto self = adaptor.self(); | ||
auto selfTy = self.getType().template cast<RankedTensorType>(); | ||
if (!selfTy) | ||
return op.emitError("only ranked tensor types are supported"); | ||
int64_t dim; | ||
if (!matchPattern(op.dim(), m_TorchConstantInt(&dim))) | ||
return rewriter.notifyMatchFailure( | ||
op, "only constant dim is currently supported"); | ||
|
||
Value output = | ||
gatherTensorAlongSingleAxis(rewriter, op, self, adaptor.index(), dim); | ||
|
||
rewriter.replaceOpWithNewOp<mhlo::ConvertOp>( | ||
op, getTypeConverter()->convertType(op.getType()), output); | ||
|
||
return success(); | ||
} | ||
} // namespace | ||
|
||
void mlir::torch::torch_to_mhlo::populateGatherOpPatternsAndLegality( | ||
TypeConverter &typeConverter, RewritePatternSet &patterns, | ||
ConversionTarget &target) { | ||
MLIRContext *context = patterns.getContext(); | ||
|
||
#define INSERT_ATENOP_PATTERN(AtenOp) \ | ||
target.addIllegalOp<AtenOp>(); \ | ||
patterns.add<ConvertAtenOp<AtenOp>>(typeConverter, context); | ||
INSERT_ATENOP_PATTERN(AtenEmbeddingOp); | ||
INSERT_ATENOP_PATTERN(AtenIndexSelectOp); | ||
#undef INSERT_ATENOP_PATTERN | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,66 @@ | ||
// RUN: torch-mlir-opt <%s -convert-torch-to-mhlo -split-input-file -verify-diagnostics | FileCheck %s | ||
|
||
// CHECK-LABEL: func.func @torch.aten.index_select$basic( | ||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,4],f32>, %[[ARG1:.*]]: !torch.vtensor<[2],si64>) -> !torch.vtensor<[2,4],f32> { | ||
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,4],f32> -> tensor<?x4xf32> | ||
// CHECK: %[[T1:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[2],si64> -> tensor<2xi64> | ||
// CHECK: %[[INT0:.*]] = torch.constant.int 0 | ||
// CHECK: %[[C1_I64:.*]] = arith.constant 1 : i64 | ||
// CHECK: %[[C1:.*]] = arith.constant 1 : index | ||
// CHECK: %[[T2:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor<?x4xf32> | ||
// CHECK: %[[T3:.*]] = arith.index_cast %[[T2]] : index to i64 | ||
// CHECK: %[[T4:.*]] = tensor.from_elements %[[C1_I64]], %[[T3]] : tensor<2xi64> | ||
// CHECK: %[[T5:.*]] = "mhlo.dynamic_gather"(%[[T0]], %[[T1]], %[[T4]]) {dimension_numbers = #mhlo.gather<offset_dims = [1], collapsed_slice_dims = [0], start_index_map = [0], index_vector_dim = 1>, indices_are_sorted = false} : (tensor<?x4xf32>, tensor<2xi64>, tensor<2xi64>) -> tensor<2x4xf32> | ||
// CHECK: %[[T6:.*]] = mhlo.convert %[[T5]] : tensor<2x4xf32> | ||
// CHECK: %[[T7:.*]] = torch_c.from_builtin_tensor %[[T6]] : tensor<2x4xf32> -> !torch.vtensor<[2,4],f32> | ||
// CHECK: return %[[T7]] : !torch.vtensor<[2,4],f32> | ||
func.func @torch.aten.index_select$basic(%arg0: !torch.vtensor<[?,4],f32>, %arg1: !torch.vtensor<[2],si64>) -> !torch.vtensor<[2,4],f32> { | ||
%int0 = torch.constant.int 0 | ||
%0 = torch.aten.index_select %arg0, %int0, %arg1 : !torch.vtensor<[?,4],f32>, !torch.int, !torch.vtensor<[2],si64> -> !torch.vtensor<[2,4],f32> | ||
return %0 : !torch.vtensor<[2,4],f32> | ||
} | ||
|
||
// CHECK-LABEL: func.func @torch.aten.embedding$basic( | ||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, %[[ARG1:.*]]: !torch.vtensor<[?],si64>) -> !torch.vtensor<[?,?],f32> { | ||
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor<?x?xf32> | ||
// CHECK: %[[T1:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?],si64> -> tensor<?xi64> | ||
// CHECK: %[[FALSE:.*]] = torch.constant.bool false | ||
// CHECK: %[[INT:.*]]-1 = torch.constant.int -1 | ||
// CHECK: %[[C1_I64:.*]] = arith.constant 1 : i64 | ||
// CHECK: %[[C1:.*]] = arith.constant 1 : index | ||
// CHECK: %[[T2:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor<?x?xf32> | ||
// CHECK: %[[T3:.*]] = arith.index_cast %[[T2]] : index to i64 | ||
// CHECK: %[[T4:.*]] = tensor.from_elements %[[C1_I64]], %[[T3]] : tensor<2xi64> | ||
// CHECK: %[[T5:.*]] = "mhlo.dynamic_gather"(%[[T0]], %[[T1]], %[[T4]]) {dimension_numbers = #mhlo.gather<offset_dims = [1], collapsed_slice_dims = [0], start_index_map = [0], index_vector_dim = 1>, indices_are_sorted = false} : (tensor<?x?xf32>, tensor<?xi64>, tensor<2xi64>) -> tensor<?x?xf32> | ||
// CHECK: %[[T6:.*]] = mhlo.convert %[[T5]] : tensor<?x?xf32> | ||
// CHECK: %[[T7:.*]] = torch_c.from_builtin_tensor %[[T6]] : tensor<?x?xf32> -> !torch.vtensor<[?,?],f32> | ||
// CHECK: return %[[T7]] : !torch.vtensor<[?,?],f32> | ||
func.func @torch.aten.embedding$basic(%weight: !torch.vtensor<[?,?],f32>, %indices: !torch.vtensor<[?], si64>) -> !torch.vtensor<[?,?],f32> { | ||
%false = torch.constant.bool false | ||
%int-1 = torch.constant.int -1 | ||
%ret = torch.aten.embedding %weight, %indices, %int-1, %false, %false : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?], si64>, !torch.int, !torch.bool, !torch.bool -> !torch.vtensor<[?,?],f32> | ||
return %ret: !torch.vtensor<[?,?],f32> | ||
} | ||
|
||
// CHECK-LABEL: func.func @torch.aten.embedding$rank_two_indices( | ||
// CHECK-SAME: %[[ARG0:.*]]: !torch.vtensor<[?,?],f32>, %[[ARG1:.*]]: !torch.vtensor<[?,1],si64>) -> !torch.vtensor<[?,1,?],f32> { | ||
// CHECK: %[[T0:.*]] = torch_c.to_builtin_tensor %[[ARG0]] : !torch.vtensor<[?,?],f32> -> tensor<?x?xf32> | ||
// CHECK: %[[T1:.*]] = torch_c.to_builtin_tensor %[[ARG1]] : !torch.vtensor<[?,1],si64> -> tensor<?x1xi64> | ||
// CHECK: %[[FALSE:.*]] = torch.constant.bool false | ||
// CHECK: %[[INT:.*]]-1 = torch.constant.int -1 | ||
// CHECK: %[[C1_I64:.*]] = arith.constant 1 : i64 | ||
// CHECK: %[[C1:.*]] = arith.constant 1 : index | ||
// CHECK: %[[T2:.*]] = tensor.dim %[[T0]], %[[C1]] : tensor<?x?xf32> | ||
// CHECK: %[[T3:.*]] = arith.index_cast %[[T2]] : index to i64 | ||
// CHECK: %[[T4:.*]] = tensor.from_elements %[[C1_I64]], %[[T3]] : tensor<2xi64> | ||
// CHECK: %[[T5:.*]] = "mhlo.dynamic_gather"(%[[T0]], %[[T1]], %[[T4]]) {dimension_numbers = #mhlo.gather<offset_dims = [2], collapsed_slice_dims = [0], start_index_map = [0], index_vector_dim = 2>, indices_are_sorted = false} : (tensor<?x?xf32>, tensor<?x1xi64>, tensor<2xi64>) -> tensor<?x1x?xf32> | ||
// CHECK: %[[T6:.*]] = mhlo.convert %[[T5]] : tensor<?x1x?xf32> | ||
// CHECK: %[[T7:.*]] = torch_c.from_builtin_tensor %[[T6]] : tensor<?x1x?xf32> -> !torch.vtensor<[?,1,?],f32> | ||
// CHECK: return %[[T7]] : !torch.vtensor<[?,1,?],f32> | ||
func.func @torch.aten.embedding$rank_two_indices(%weight: !torch.vtensor<[?,?],f32>, %indices: !torch.vtensor<[?,1], si64>) -> !torch.vtensor<[?,1,?],f32> { | ||
%false = torch.constant.bool false | ||
%int-1 = torch.constant.int -1 | ||
%ret = torch.aten.embedding %weight, %indices, %int-1, %false, %false : !torch.vtensor<[?,?],f32>, !torch.vtensor<[?,1], si64>, !torch.int, !torch.bool, !torch.bool -> !torch.vtensor<[?,1,?],f32> | ||
return %ret: !torch.vtensor<[?,1,?],f32> | ||
} | ||
|