Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Decomposition of aten.pixel_shuffle with static input shape #2550

Merged
merged 7 commits into from
Nov 8, 2023
Merged
Show file tree
Hide file tree
Changes from 6 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -6419,6 +6419,30 @@ def Torch_AtenPermuteOp : Torch_Op<"aten.permute", [
}];
}

def Torch_AtenPixelShuffleOp : Torch_Op<"aten.pixel_shuffle", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::pixel_shuffle : (Tensor, int) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$self,
Torch_IntType:$upscale_factor
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenPixelShuffleOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 2, 1);
}
void AtenPixelShuffleOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 2, 1);
}
}];
}

def Torch_AtenMovedimIntOp : Torch_Op<"aten.movedim.int", [
AllowsTypeRefinement,
ReadOnly
Expand Down
44 changes: 44 additions & 0 deletions lib/Dialect/Torch/Transforms/AbstractInterpLibrary.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -6749,6 +6749,50 @@ StringRef mlir::torch::Torch::getAbstractInterpLibrary() {
" %3 = call @__torch__.torch.jit._shape_functions.sum_mean_dim(%arg0, %1, %arg2, %2) : (!torch.list<int>, !torch.optional<list<int>>, !torch.bool, !torch.any) -> !torch.list<int>\n"
" return %3 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.pixel_shuffle\"(%arg0: !torch.list<int>, %arg1: !torch.int) -> !torch.list<int> {\n"
" %int-1 = torch.constant.int -1\n"
" %int-2 = torch.constant.int -2\n"
" %int1 = torch.constant.int 1\n"
" %str = torch.constant.str \"AssertionError: number of input channels must be divisible by upscale_factor^2 in pixel_shuffle\"\n"
" %int-3 = torch.constant.int -3\n"
" %none = torch.constant.none\n"
" %str_0 = torch.constant.str \"AssertionError: input must be at least rank-3 in pixel_shuffle\"\n"
" %int3 = torch.constant.int 3\n"
" %int0 = torch.constant.int 0\n"
" %0 = torch.aten.len.t %arg0 : !torch.list<int> -> !torch.int\n"
" %1 = torch.aten.ge.int %0, %int3 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If %1 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str_0, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %2 = torch.aten.mul.int %arg1, %arg1 : !torch.int, !torch.int -> !torch.int\n"
" %3 = torch.aten.__getitem__.t %arg0, %int-3 : !torch.list<int>, !torch.int -> !torch.int\n"
" %4 = torch.aten.remainder.int %3, %2 : !torch.int, !torch.int -> !torch.int\n"
" %5 = torch.aten.eq.int %4, %int0 : !torch.int, !torch.int -> !torch.bool\n"
" torch.prim.If %5 -> () {\n"
" torch.prim.If.yield\n"
" } else {\n"
" torch.prim.RaiseException %str, %none : !torch.str, !torch.none\n"
" torch.prim.If.yield\n"
" }\n"
" %6 = torch.aten.slice.t %arg0, %int0, %int-3, %int1 : !torch.list<int>, !torch.int, !torch.int, !torch.int -> !torch.list<int>\n"
" %7 = torch.aten.__getitem__.t %arg0, %int-3 : !torch.list<int>, !torch.int -> !torch.int\n"
" %8 = torch.aten.floordiv.int %7, %2 : !torch.int, !torch.int -> !torch.int\n"
" %9 = torch.aten.append.t %6, %8 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
" %10 = torch.aten.__getitem__.t %arg0, %int-2 : !torch.list<int>, !torch.int -> !torch.int\n"
" %11 = torch.aten.mul.int %10, %arg1 : !torch.int, !torch.int -> !torch.int\n"
" %12 = torch.aten.append.t %6, %11 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
" %13 = torch.aten.__getitem__.t %arg0, %int-1 : !torch.list<int>, !torch.int -> !torch.int\n"
" %14 = torch.aten.mul.int %13, %arg1 : !torch.int, !torch.int -> !torch.int\n"
" %15 = torch.aten.append.t %6, %14 : !torch.list<int>, !torch.int -> !torch.list<int>\n"
" return %6 : !torch.list<int>\n"
" }\n"
" func.func @\"__torch_mlir_dtype_fn.aten.pixel_shuffle\"(%arg0: !torch.tuple<int, int>, %arg1: !torch.int) -> !torch.int {\n"
" %0:2 = torch.prim.TupleUnpack %arg0 : !torch.tuple<int, int> -> !torch.int, !torch.int\n"
" return %0#1 : !torch.int\n"
" }\n"
" func.func @\"__torch_mlir_shape_fn.aten.permute\"(%arg0: !torch.list<int>, %arg1: !torch.list<int>) -> !torch.list<int> {\n"
" %0 = call @__torch__.torch.jit._shape_functions.permute(%arg0, %arg1) : (!torch.list<int>, !torch.list<int>) -> !torch.list<int>\n"
" return %0 : !torch.list<int>\n"
Expand Down
191 changes: 183 additions & 8 deletions lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -93,7 +93,7 @@ static Value createSumAlongDimension(PatternRewriter &rewriter, Location loc,
keepDimCst, dtype);
}

// Redunction function to calculate max along given `dim`.
// Reduction function to calculate max along given `dim`.
static Value createMaxAlongDimension(PatternRewriter &rewriter, Location loc,
Operation *op, Value input, Value dim,
bool keepDim) {
Expand Down Expand Up @@ -211,6 +211,7 @@ class DecomposeAtenAmaxOp : public OpRewritePattern<AtenAmaxOp> {
Location loc = op.getLoc();
SmallVector<int64_t, 4> dims;
if (!matchPattern(op.getDim(), m_TorchListOfConstantInts(dims)))

return rewriter.notifyMatchFailure(op,
"non-const dim parameter unsupported");

Expand All @@ -227,8 +228,7 @@ class DecomposeAtenAmaxOp : public OpRewritePattern<AtenAmaxOp> {
}
// For every dimension included in `dim` of the op, iterated over in
// reverse order, we create a call to aten.max.dim.
std::sort(dims.begin(), dims.end());
std::reverse(dims.begin(), dims.end());
std::sort(dims.rbegin(), dims.rend());
newling marked this conversation as resolved.
Show resolved Hide resolved
for (int64_t dimInt : dims) {
int64_t inputRank = inputTy.getSizes().size();
dimInt = toPositiveDim(dimInt, inputRank);
Expand All @@ -255,6 +255,7 @@ class DecomposeAtenSizeOp : public OpRewritePattern<AtenSizeOp> {
Location loc = op.getLoc();
Value self = op.getSelf();
MLIRContext *context = op.getContext();

std::optional<unsigned> maybeRank = getTensorRank(self);
if (!maybeRank)
return rewriter.notifyMatchFailure(op, "Unimplemented: unranked tensor");
Expand Down Expand Up @@ -386,9 +387,10 @@ class DecomposeAtenGluOp : public OpRewritePattern<AtenGluOp> {

Value remainder = rewriter.create<AtenRemainderIntOp>(loc, dimSize, two);
Value eqOrNot = rewriter.create<AtenEqIntOp>(loc, remainder, zero);

rewriter.create<RuntimeAssertOp>(
loc, eqOrNot,
rewriter.getStringAttr("AtenGluOp's dim size must be multiply of 2"));
rewriter.getStringAttr("AtenGluOp's dim size must be multiple of 2"));

Value splitLength = rewriter.create<AtenFloordivIntOp>(loc, dimSize, two);
Value a = rewriter.create<AtenNarrowOp>(loc, outputTy, self, dim, zero,
Expand Down Expand Up @@ -443,6 +445,7 @@ class DecomposeAtenEyeMOp : public OpRewritePattern<AtenEyeMOp> {
PatternRewriter &rewriter) const override {
Location loc = op.getLoc();
int64_t n;

if (!matchPattern(op.getN(), m_TorchConstantInt(&n)))
return rewriter.notifyMatchFailure(op,
"unimplemented: n must be constant");
Expand Down Expand Up @@ -1092,9 +1095,181 @@ class DecomposeAtenMvOp : public OpRewritePattern<AtenMvOp> {
};
} // namespace

// Decompose aten.pixel_shuffle into: aten.permute and aten.reshape operations.
//
// If input is a tensor of shape (*leading_dims, C*r*r, H, W), where
// leading_dims is of size N, then
// X = pixel_shuffle(input, upscale_factor)
//
// gets replaced with
// A = input.reshape(*leading_dims, C, r, r, H, W)
// B = A.permute(0, ..., N, N+3, N+1, N+4, N+2)
// X = B.reshape(*leading_dims, C, r*H, r*W)
//
// 'r' above is referred to as the 'upscale factor' or just 'factor' below.
namespace {
class DecomposeAtenPixelShuffleOp
: public OpRewritePattern<AtenPixelShuffleOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenPixelShuffleOp op,
PatternRewriter &rewriter) const override {


Location loc = op.getLoc();
Value inValue = op.getSelf();
auto inType = inValue.getType().cast<BaseTensorType>();
auto maybeSizes = inType.getOptionalSizes();
if (!maybeSizes) {
return rewriter.notifyMatchFailure(
op, "Expected input tensor to have known rank.");
}
auto inShape = maybeSizes.value();
auto inRank = inShape.size();

// TODO support dynamic shapes, probably by lowering pixel_shuffle to linalg
// directly. Pixel shuffle does a reshape that is hard to recover
// through pure torch (view) ops, especially in dynamic cases.
//
// See: https://github.com/llvm/torch-mlir/issues/2559
//
qedawkins marked this conversation as resolved.
Show resolved Hide resolved
// For now, we just fail the decomposition here so that a sensible error is
// provided:
for (auto dimSize : inShape) {
if (dimSize == kUnknownSize) {
return rewriter.notifyMatchFailure(
op, "Currently we only decompose pixel_shuffle if the input tensor "
"is statically shaped");
}
}
// The input tensor must have at least 3 dimensions: (1) the channel
// dimension which gets smaller by 'factor*factor', (2) the H channel which
// gets larger by 'factor' and (3) the W channel which get larger by
// 'factor'. The total number of dimensions is 3 + N, where N is the number
// of leading dimensions, and N >= 0 so the input must have rank at least 3.
if (inRank < 3)
return rewriter.notifyMatchFailure(
op, "Expected input tensor to have rank greater than 2.");

auto nLeadingDims = inRank - 3;

// Get the size of the dimension 'i'. Note the use of 'createOrFold' instead
// of 'create': if the dimension size is known, then the AtenSizeIntOp is
// folded to a ConstantOp.
auto getDimSize = [&](uint64_t i) -> Value {
Value dim =
rewriter.create<ConstantIntOp>(loc, rewriter.getI64IntegerAttr(i));
return rewriter.createOrFold<AtenSizeIntOp>(loc, inValue, dim);
};

auto inC = getDimSize(inRank - 3);
auto inH = getDimSize(inRank - 2);
auto inW = getDimSize(inRank - 1);

auto factor = op.getUpscaleFactor();


Value factorSquared =
rewriter.createOrFold<AtenMulIntOp>(loc, factor, factor);
Value outC =
rewriter.createOrFold<AtenFloordivIntOp>(loc, inC, factorSquared);

Value outH = rewriter.createOrFold<AtenMulIntOp>(loc, inH, factor);
Value outW = rewriter.createOrFold<AtenMulIntOp>(loc, inW, factor);

// Shape of 'A' in the comment at the top
SmallVector<Value> prePermuteShape;
prePermuteShape.reserve(nLeadingDims + 5);

// Shape of 'B' in the comment at the top.
SmallVector<Value> postPermuteShape;
postPermuteShape.reserve(nLeadingDims + 5);

SmallVector<Value> outShape;
outShape.reserve(nLeadingDims + 3);

SmallVector<Value> permutation;
permutation.reserve(nLeadingDims + 5);

for (unsigned i = 0; i < nLeadingDims; ++i) {
auto dimensionAttr = rewriter.getI64IntegerAttr(i);
Value dimensionValue = rewriter.create<ConstantIntOp>(loc, dimensionAttr);
Value leadingDimSize =
rewriter.createOrFold<AtenSizeIntOp>(loc, inValue, dimensionValue);
prePermuteShape.push_back(leadingDimSize);
postPermuteShape.push_back(leadingDimSize);
outShape.push_back(leadingDimSize);
permutation.push_back(dimensionValue);

}

const auto inOptionalDType = inType.getOptionalDtype();

auto getTypeFromShape = [inOptionalDType](auto &&vals) {
// Get a vector of integers from a vector of Values.
auto getIntShape = [](auto &&vals) {
SmallVector<int64_t> shape;
shape.reserve(vals.size());
for (auto v : vals) {
int64_t cst_val;
if (matchPattern(v, m_TorchConstantInt(&cst_val))) {
shape.push_back(cst_val);
} else {
shape.push_back(kUnknownSize);
}
}
return shape;
};

const auto intShape = getIntShape(vals);
return ValueTensorType::get(vals[0].getContext(),
llvm::ArrayRef(intShape), inOptionalDType);
};

prePermuteShape.insert(prePermuteShape.end(),
{outC, factor, factor, inH, inW});

postPermuteShape.insert(postPermuteShape.end(),
{outC, inH, factor, inW, factor});

outShape.insert(outShape.end(), {outC, outH, outW});

SmallVector<uint64_t> permutationTail{0, 3, 1, 4, 2};
for (uint64_t d : permutationTail) {
permutation.push_back(rewriter.create<ConstantIntOp>(
loc, rewriter.getI64IntegerAttr(nLeadingDims + d)));
}

auto listType = Torch::ListType::get(Torch::IntType::get(op.getContext()));

Value shapeA =
rewriter.create<PrimListConstructOp>(loc, listType, prePermuteShape);

Value A = rewriter.create<AtenReshapeOp>(
loc, getTypeFromShape(prePermuteShape), inValue, shapeA);

Value permuteDimsOrder = rewriter.create<PrimListConstructOp>(
loc, Torch::ListType::get(Torch::IntType::get(op->getContext())),
permutation);

Value B = rewriter.create<AtenPermuteOp>(
loc, getTypeFromShape(postPermuteShape), A, permuteDimsOrder);

Value outShapeList =
rewriter.create<PrimListConstructOp>(loc, listType, outShape);

auto deducedReturnType = getTypeFromShape(outShape);

rewriter.replaceOpWithNewOp<AtenReshapeOp>(op, deducedReturnType, B,
outShapeList);
return success();
}
};
} // namespace

// ReLU6(x) = min(max(0, x), 6) = min(Relu(x), 6)
static Value getRelu6Results(PatternRewriter &rewriter, Location loc,
Value input) {
static Value
getRelu6Results(PatternRewriter &rewriter, Location loc, Value input) {
BaseTensorType inputType = input.getType().cast<BaseTensorType>();

Value relu = rewriter.create<AtenReluOp>(loc, inputType, input);
Expand Down Expand Up @@ -4717,8 +4892,7 @@ class DecomposePrimsSqueezeOp : public OpRewritePattern<PrimsSqueezeOp> {
return rewriter.notifyMatchFailure(
op, "all dimensions must be constant ints");

std::sort(dimensions.begin(), dimensions.end());
std::reverse(dimensions.begin(), dimensions.end());
std::sort(dimensions.rbegin(), dimensions.rend());

if (dimensions.size() == 0) {
rewriter.replaceOp(op, input);
Expand Down Expand Up @@ -5463,6 +5637,7 @@ class DecomposeComplexOpsPass
addPatternIfTargetOpIsIllegal<DecomposeAtenSelectIntOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMatmulOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenMvOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenPixelShuffleOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAtenTOp>(patterns);
addPatternIfTargetOpIsIllegal<DecomposeAten_LogSoftmaxBackwardDataOp>(
patterns);
Expand Down
1 change: 1 addition & 0 deletions lib/Dialect/Torch/Transforms/LowerToBackendContract.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -391,6 +391,7 @@ static void markDecomposedOpsAsIllegal(MLIRContext *context,
target.addIllegalOp<AtenNormScalarOptDimOp>();
target.addIllegalOp<AtenSelectIntOp>();
target.addIllegalOp<AtenMvOp>();
target.addIllegalOp<AtenPixelShuffleOp>();
target.addIllegalOp<AtenTOp>();
target.addIllegalOp<Aten_LogSoftmaxBackwardDataOp>();
target.addDynamicallyLegalOp<AtenMatmulOp>([](AtenMatmulOp op) {
Expand Down
2 changes: 1 addition & 1 deletion lib/Dialect/Torch/Utils/Utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -206,7 +206,7 @@ bool Torch::isViewLikeOp(Operation *op) {
TensorStaticInfoCastOp, AtenToDtypeLayoutOp, AtenNumpyTOp,
AtenNarrowOp, AtenNarrowTensorOp, AtenToDeviceOp, PrimsSqueezeOp,
AtenMovedimIntOp, PrimsViewOfOp, AtenRealOp, AtenImagOp,
AtenViewAsComplexOp, AtenViewAsRealOp>(op);
AtenViewAsComplexOp, AtenViewAsRealOp, AtenPixelShuffleOp>(op);
}

Value Torch::getConstantWithGivenDtypeAndValue(PatternRewriter &rewriter,
Expand Down
4 changes: 4 additions & 0 deletions projects/pt1/e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -941,6 +941,8 @@
# Write the TOSA set as a "passing" set as it is very early in development
# and very few tests work yet.
TOSA_PASS_SET = {
"PixelShuffleModuleStatic_12_2_3_basic",
"PixelShuffleModuleStatic_3_18_2_2_basic",
"IscloseStaticModule_basic",
"IscloseStaticModuleTrue_basic",
"TileBigDimsSizeModule_basic",
Expand Down Expand Up @@ -1350,6 +1352,8 @@
}

LTC_XFAIL_SET = {
"PixelShuffleModuleStatic_12_2_3_basic",
"PixelShuffleModuleStatic_3_18_2_2_basic",
"_Convolution2DAllFalseModule_basic",
"_Convolution2DBenchmarkModule_basic",
"_Convolution2DCudnnModule_basic",
Expand Down
Loading