Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add transposed case for at::convolution #917

Merged
merged 1 commit into from
Aug 24, 2022
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
90 changes: 90 additions & 0 deletions include/torch-mlir/Dialect/Torch/IR/GeneratedTorchOps.td
Original file line number Diff line number Diff line change
Expand Up @@ -3347,6 +3347,96 @@ def Torch_AtenConv2dOp : Torch_Op<"aten.conv2d", [
}];
}

def Torch_AtenConvTranspose1dOp : Torch_Op<"aten.conv_transpose1d", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::conv_transpose1d : (Tensor, Tensor, Tensor?, int[], int[], int[], int, int[]) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$input,
AnyTorchTensorType:$weight,
AnyTorchOptionalTensorType:$bias,
AnyTorchListOfTorchIntType:$stride,
AnyTorchListOfTorchIntType:$padding,
AnyTorchListOfTorchIntType:$output_padding,
Torch_IntType:$groups,
AnyTorchListOfTorchIntType:$dilation
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenConvTranspose1dOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 8, 1);
}
void AtenConvTranspose1dOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 8, 1);
}
}];
}

def Torch_AtenConvTranspose2dInputOp : Torch_Op<"aten.conv_transpose2d.input", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::conv_transpose2d.input : (Tensor, Tensor, Tensor?, int[], int[], int[], int, int[]) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$input,
AnyTorchTensorType:$weight,
AnyTorchOptionalTensorType:$bias,
AnyTorchListOfTorchIntType:$stride,
AnyTorchListOfTorchIntType:$padding,
AnyTorchListOfTorchIntType:$output_padding,
Torch_IntType:$groups,
AnyTorchListOfTorchIntType:$dilation
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenConvTranspose2dInputOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 8, 1);
}
void AtenConvTranspose2dInputOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 8, 1);
}
}];
}

def Torch_AtenConvTranspose3dInputOp : Torch_Op<"aten.conv_transpose3d.input", [
AllowsTypeRefinement,
HasValueSemantics,
ReadOnly
]> {
let summary = "Generated op for `aten::conv_transpose3d.input : (Tensor, Tensor, Tensor?, int[], int[], int[], int, int[]) -> (Tensor)`";
let arguments = (ins
AnyTorchTensorType:$input,
AnyTorchTensorType:$weight,
AnyTorchOptionalTensorType:$bias,
AnyTorchListOfTorchIntType:$stride,
AnyTorchListOfTorchIntType:$padding,
AnyTorchListOfTorchIntType:$output_padding,
Torch_IntType:$groups,
AnyTorchListOfTorchIntType:$dilation
);
let results = (outs
AnyTorchTensorType:$result
);
let hasCustomAssemblyFormat = 1;
let extraClassDefinition = [{
ParseResult AtenConvTranspose3dInputOp::parse(OpAsmParser &parser, OperationState &result) {
return parseDefaultTorchOp(parser, result, 8, 1);
}
void AtenConvTranspose3dInputOp::print(OpAsmPrinter &printer) {
printDefaultTorchOp(printer, *this, 8, 1);
}
}];
}

def Torch_AtenConvolutionOp : Torch_Op<"aten.convolution", [
AllowsTypeRefinement,
HasValueSemantics,
Expand Down
138 changes: 115 additions & 23 deletions lib/Conversion/TorchToLinalg/Linear.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -22,6 +22,7 @@
#include "torch-mlir/Dialect/Torch/IR/TorchOps.h"
#include "torch-mlir/Dialect/Torch/Utils/TorchUpstream.h"
#include "torch-mlir/Dialect/Torch/Utils/Utils.h"
#include <algorithm>

using namespace mlir;
using namespace mlir::torch;
Expand Down Expand Up @@ -635,12 +636,18 @@ class ConvertAtenConvolutionOp : public OpConversionPattern<AtenConvolutionOp> {
Value input = adaptor.input(); /* in form of N*C*H*W */
Value weight = adaptor.weight(); /* in form of F*C*H*W */

bool transposed = true;
if (!matchPattern(op.transposed(), m_TorchConstantBool(&transposed)))
return rewriter.notifyMatchFailure(
op, "unimplemented: only constant transposed supported");

Type elementType =
input.getType().cast<RankedTensorType>().getElementType();
if (!elementType.isa<mlir::FloatType>())
return op.emitError("unimplemented: non-floating point type");
size_t inRank = input.getType().cast<RankedTensorType>().getRank();
if (inRank != 4)
size_t numSpacialDims = inRank - 2;
if (numSpacialDims != 2)
return rewriter.notifyMatchFailure(
op, "unimplemented: only 2D convolution currently supported");

Expand Down Expand Up @@ -674,13 +681,6 @@ class ConvertAtenConvolutionOp : public OpConversionPattern<AtenConvolutionOp> {
for (size_t i = 2; i < inRank; i++)
weightDims.push_back(getDimOp(rewriter, loc, weight, i));

// Guard unused values (transposed)
bool transposed = true;
if (!matchPattern(op.transposed(), m_TorchConstantBool(&transposed)) ||
transposed)
return rewriter.notifyMatchFailure(
op, "unimplemented: only non-transposed convolution supported");

// Checks for valid group size
int64_t groupSize;
if (!matchPattern(op.groups(), m_TorchConstantInt(&groupSize)))
Expand All @@ -701,19 +701,119 @@ class ConvertAtenConvolutionOp : public OpConversionPattern<AtenConvolutionOp> {
"invalid: groups must divide input channel size evenly.");
validate(weightBatch,
"invalid: groups must divide weight batch size evenly.");

SmallVector<Value> paddingIntValues =
getAsConstantIntValues(rewriter, loc, paddingInts);
SmallVector<Value> dilationIntValues =
getAsConstantIntValues(rewriter, loc, dilationInts);
SmallVector<Value> paddingIntValues =
getAsConstantIntValues(rewriter, loc, paddingInts);
SmallVector<Value> strideIntValues =
getAsConstantIntValues(rewriter, loc, strideInts);

// Pad the input tensor according to padding.
SmallVector<Value> outDims{inBatch, weightBatch};
for (size_t i = 0; i < inRank - 2; i++)
outDims.push_back(torch_to_linalg::getOutputDimForConvOps(
rewriter, loc, inDims[i], paddingIntValues[i], dilationIntValues[i],
castIndexToInt(weightDims[i]), strideIntValues[i]));
Value paddedInput;
if (transposed) {
Value c0 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(0));
Value c1 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(1));
Value c2 =
rewriter.create<arith::ConstantOp>(loc, rewriter.getIndexAttr(2));

// Transpose and flip weight
SmallVector<Value> weightInitDims = getTensorSizes(rewriter, loc, weight);
std::iter_swap(weightInitDims.begin(), weightInitDims.begin() + 1);
outDims[1] = weightInitDims[0];
Value weightInitTensor =
createZeroInitTensor(rewriter, loc, weightInitDims, elementType);
SmallVector<StringRef> iteratorTypes(inRank,
getParallelIteratorTypeName());
SmallVector<AffineMap> indexingMaps(
2, AffineMap::getMultiDimIdentityMap(inRank, context));
weight = rewriter
.create<linalg::GenericOp>(
loc, weightInitTensor.getType(), weight,
weightInitTensor, indexingMaps, iteratorTypes,
[&](OpBuilder &b, Location loc, ValueRange args) {
SmallVector<Value> indices;
for (size_t i = 0; i < inRank; i++)
indices.push_back(b.create<linalg::IndexOp>(loc, i));
std::iter_swap(indices.begin(), indices.begin() + 1);
// Flip only the spatial dimensions (from 2 to inRank)
for (size_t flipDim = 2; flipDim < inRank; flipDim++) {
indices[flipDim] = b.create<arith::SubIOp>(
loc,
b.create<arith::SubIOp>(
loc, weightInitDims[flipDim], c1),
indices[flipDim]);
}
Value res =
b.create<tensor::ExtractOp>(loc, weight, indices)
.getResult();
b.create<linalg::YieldOp>(loc, res);
})
.getResult(0);

// Calculate padded input size, allocate tensor
SmallVector<Value> outerSizes{inBatch, inChannels};
SmallVector<Value> innerSizes{inBatch, inChannels};
SmallVector<Value> offsets{c0, c0};
for (size_t i = 0; i < numSpacialDims; i++) {
Value innerSize = rewriter.create<arith::SubIOp>(loc, inDims[i], c1);
innerSize = rewriter.create<arith::MulIOp>(
loc, innerSize, castIntToIndex(rewriter, loc, strideIntValues[i]));
innerSize = rewriter.create<arith::AddIOp>(loc, innerSize, c1);

Value offset = rewriter.create<arith::SubIOp>(loc, weightDims[i], c1);
offset = rewriter.create<arith::MulIOp>(
loc, offset, castIntToIndex(rewriter, loc, dilationIntValues[i]));
offset = rewriter.create<arith::SubIOp>(
loc, offset, castIntToIndex(rewriter, loc, paddingIntValues[i]));

Value outerSize = rewriter.create<arith::MulIOp>(loc, offset, c2);
outerSize = rewriter.create<arith::AddIOp>(loc, outerSize, innerSize);

outerSizes.push_back(outerSize);
offsets.push_back(offset);
}

// Allocate padded input tensor
Value initTensor =
createZeroInitTensor(rewriter, loc, outerSizes, elementType);

// Insert input into allocated tensor
SmallVector<Value> strideIndexValues{c1, c1};
for (auto stride : strideIntValues)
strideIndexValues.push_back(castIntToIndex(rewriter, loc, stride));
SmallVector<Value> insertSizes = getTensorSizes(rewriter, loc, input);

paddedInput = rewriter.create<tensor::InsertSliceOp>(
loc, torch_to_linalg::removeSizeInformation(rewriter, loc, input),
gpetters94 marked this conversation as resolved.
Show resolved Hide resolved
initTensor, offsets, insertSizes, strideIndexValues);

// Calculate output dims
for (size_t i = 0; i < numSpacialDims; i++)
outDims.push_back(torch_to_linalg::getOutputDimForConvTransposeOps(
rewriter, loc, inDims[i], paddingIntValues[i], dilationIntValues[i],
castIndexToInt(weightDims[i]), strideIntValues[i]));

// Set stride to 1
strideInts.clear();
strideInts.append(numSpacialDims, 1);

} else {
// Pad input
SmallVector<int64_t, 4> paddingIncludingNC = {0, 0};
paddingIncludingNC.insert(paddingIncludingNC.end(), paddingInts.begin(),
paddingInts.end());
paddedInput = torch_to_linalg::getZeroPaddedTensor(op, rewriter, input,
paddingIncludingNC);

// Calculate output dims
for (size_t i = 0; i < numSpacialDims; i++)
outDims.push_back(torch_to_linalg::getOutputDimForConvOps(
rewriter, loc, inDims[i], paddingIntValues[i], dilationIntValues[i],
castIndexToInt(weightDims[i]), strideIntValues[i]));
ramiro050 marked this conversation as resolved.
Show resolved Hide resolved
}

Value initTensor =
rewriter.create<linalg::InitTensorOp>(loc, outDims, elementType);
Expand Down Expand Up @@ -769,14 +869,6 @@ class ConvertAtenConvolutionOp : public OpConversionPattern<AtenConvolutionOp> {
SmallVector<Value> weightSliceSizes{weightStride, weightChannels};
weightSliceSizes.append(weightDims);

// Pad the input tensor according to padding.
SmallVector<int64_t, 4> paddingIncludingNC = {0, 0};
paddingIncludingNC.append(paddingInts);

// Pad inputSlice
Value paddedInput = torch_to_linalg::getZeroPaddedTensor(
op, rewriter, input, paddingIncludingNC);

Value conv;
if (groupSize == 1) {
// TODO: add 1D and 3D case
Expand Down
33 changes: 33 additions & 0 deletions lib/Conversion/TorchToLinalg/Utils.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -97,6 +97,31 @@ Value torch_to_linalg::getOutputDimForConvOps(OpBuilder &b, Location loc,
return castIntToIndex(b, loc, out);
}

Value torch_to_linalg::getOutputDimForConvTransposeOps(
OpBuilder &b, Location loc, Value in, Value paddingInt, Value dilationInt,
Value kernelSizeInt, Value strideInt) {
Value c1 = b.create<arith::ConstantOp>(loc, b.getI64IntegerAttr(1));
Value c2 = b.create<arith::ConstantOp>(loc, b.getI64IntegerAttr(2));

// (in - 1) * stride
Value inStrided =
b.create<arith::SubIOp>(loc, castIndexToInt64(b, loc, in), c1);
inStrided = b.create<arith::MulIOp>(loc, inStrided, strideInt);

// 2 * padding
Value doublePadding = b.create<arith::MulIOp>(loc, paddingInt, c2);

// (kernelSize - 1) * dilation
Value kernelDilated = b.create<arith::SubIOp>(loc, kernelSizeInt, c1);
kernelDilated = b.create<arith::MulIOp>(loc, kernelDilated, dilationInt);

Value out = b.create<arith::SubIOp>(loc, inStrided, doublePadding);
out = b.create<arith::AddIOp>(loc, out, kernelDilated);
out = b.create<arith::AddIOp>(loc, out, c1);

return castIntToIndex(b, loc, out);
}

Value torch_to_linalg::createReductionLinalgGeneric(
OpBuilder &b, Location loc, const ReductionOpInfo &opInfo, Value initElem,
function_ref<void(OpBuilder &, Location, ValueRange)> bodyBuild) {
Expand Down Expand Up @@ -338,3 +363,11 @@ LogicalResult torch_to_linalg::broadcastToGivenShape(

return success();
}

Value torch_to_linalg::removeSizeInformation(OpBuilder &b, Location loc,
Value tensor) {
auto tensorType = tensor.getType().cast<RankedTensorType>();
auto rank = tensorType.getRank();
SmallVector<int64_t> unknownSizes(rank, kUnknownSize);
return b.create<tensor::CastOp>(loc, tensorType.clone(unknownSizes), tensor);
}
11 changes: 11 additions & 0 deletions lib/Conversion/TorchToLinalg/Utils.h
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,14 @@ Value getOutputDimForConvOps(OpBuilder &b, Location loc, Value in,
Value kernelSizeInt, Value strideInt,
bool ceilMode = false);

// As above but for transposed convolution ops
// Along each dim:
// dim_out =
// (dim_in - 1) * stride - 2 * padding + dilation * (kernelSize - 1) + 1
Value getOutputDimForConvTransposeOps(OpBuilder &b, Location loc, Value in,
Value paddingInt, Value dilationInt,
Value kernelSizeInt, Value strideInt);

// Create a reduction of `opInfo.tensorOperand`, reducing along the dimensions
// in `opInfo.dimSet`. If `opInfo.keepDim` is true, the output tensor is the
// same rank as the `opInfo.tensorOperand` and reduced dimensions are set to
Expand All @@ -61,6 +69,9 @@ LogicalResult broadcastToGivenShape(Operation *op, PatternRewriter &rewriter,
SmallVector<Value> broadcastToShape,
Value &result);

// Cast a tensor to a rank-equivalent tensor of unknown size, i.e. <1x2xf32> ->
// <?x?xf32>
Value removeSizeInformation(OpBuilder &b, Location loc, Value tensor);
} // namespace torch_to_linalg
} // namespace torch
} // namespace mlir
22 changes: 22 additions & 0 deletions lib/Dialect/Torch/Transforms/DecomposeComplexOps.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1031,6 +1031,26 @@ class DecomposeAtenConv2dOp : public OpRewritePattern<AtenConv2dOp> {
};
} // namespace

// Decompose aten.conv_transpose2d to aten.convolution
namespace {
class DecomposeAtenConvTranspose2dOp
: public OpRewritePattern<AtenConvTranspose2dInputOp> {
public:
using OpRewritePattern::OpRewritePattern;
LogicalResult matchAndRewrite(AtenConvTranspose2dInputOp op,
PatternRewriter &rewriter) const override {

Value cstTrue = rewriter.create<Torch::ConstantBoolOp>(op.getLoc(), true);
rewriter.replaceOpWithNewOp<AtenConvolutionOp>(
op, op->getResultTypes(), op.input(), op.weight(), op.bias(),
op.stride(), op.padding(), op.dilation(), /*transposed=*/cstTrue,
op.output_padding(), op.groups());

return success();
}
};
} // namespace

// Decompose aten.addmm into aten.mm and aten.add.Tensor op.
namespace {
class DecomposeAtenAddmmOp : public OpRewritePattern<AtenAddmmOp> {
Expand Down Expand Up @@ -2613,6 +2633,8 @@ class DecomposeComplexOpsPass
context);
target.addIllegalOp<AtenConv2dOp>();
patterns.add<DecomposeAtenConv2dOp>(context);
target.addIllegalOp<AtenConvTranspose2dInputOp>();
patterns.add<DecomposeAtenConvTranspose2dOp>(context);
patterns.add<DecomposeAtenArangeOp>(context);
target.addIllegalOp<AtenArangeOp>();
patterns.add<DecomposeAtenArangeStartOp>(context);
Expand Down
3 changes: 2 additions & 1 deletion lib/Dialect/Torch/Transforms/RefineTypes.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -712,7 +712,8 @@ void TypeAnalysis::visitOperation(Operation *op,

// Promote the two dtypes assuming non-zero rank.
if (isa<AtenMmOp, AtenBmmOp, AtenMatmulOp, AtenConv2dOp, AtenConvolutionOp,
Aten_ConvolutionOp, Aten_ConvolutionDeprecatedOp, AtenConvolutionOverrideableOp>(op)) {
Aten_ConvolutionOp, Aten_ConvolutionDeprecatedOp,
AtenConvolutionOverrideableOp, AtenConvTranspose2dInputOp>(op)) {
auto knowledge =
ValueKnowledge::getTensorPessimisticValueState(op->getContext());
knowledge.dtype = getPromotedResultTypeAssumingNonZeroRank(
Expand Down
Loading