Skip to content

looooongChen/MRBrainS-Brain-Segmentation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

16 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MRBrainS2018-Brain-Segmentation

MixNet: Multi-modality Mix Network for Brain Segmentation

@inproceedings{LongMACCAIBrainLes,
   author = {Long Chen, Dorit Merhof},
   title = {MixNet: Multi-modality Mix Network for Brain Segmentation},
   booktitle = {MICCAI Brainlesion Workshop (BrainLes)},
   year = {2018},
}

links:

MICCAI BrainLes Workshop
MICCAI MRBrainS2018 Challenge
MICCAI MRBrainS2013 Challenge
Institute of Imaging & Computer Vision, RWTH Aachen University

Prerequisites

Python dependencies:

  • tensorflow
  • matplotlib
  • scipy
  • nibabel

Data dependencies:

The model is trained with MICCAI MRBrainS2013/MRBrainS2018 dataset. To train a model from scratch, you may also use these two datasets.

If you want to run the code directly, you should organise the dataset structure as following:

For the MICCAI MRBrainS2013 dataset:

├─ root
    └─ MRBrainS2013
        └─ trainingData
            └─ 1
                └─ (LabelsForTesting.nii, LabelsForTraining.nii, T1.nii, T1_1mm.nii, T1_IR.nii, T2_FLAIR.nii)
            └─ 2
               ... ...
        └─ testData
            └─ 1
                └─ (T1.nii, T1_1mm.nii, T1_IR.nii, T2_FLAIR.nii)
            └─ 2
               ... ...

For the MICCAI MRBrainS2018 dataset:

├─ root
    └─ MRBrainS2018
        └─ trainingData
            └─ 1
                └─ segm.nii.gz
                └─ pre
                    └─ (FLAIR.nii.gz, IR.nii.gz, reg_IR.nii.gz, reg_T1.nii.gz, T1.nii.gz)
                └─ orig
                    └─ (FLAIR.nii.gz, IR.nii.gz, reg_3DT1_to_FLAIR.txt, reg_IR.nii.gz, reg_T1.nii.gz, T1.nii.gz, T1_mask.nii.gz)
            └─ 4
               ... ...

If the data is not organised as above, you should change the dictionary dataset_config in train.py and predict.py correspondingly.

Download pretrainde model

Unzip the pretrained models in the model folder, like:

├─ root
    └─ models
        └─ model_2013_nopp
                └─ checkpoint
                └─ graph.pbtxt
                └─ model.ckpt-257945.data-00000-of-00001
                └─ model.ckpt-257945.index
                └─ model.ckpt-257945.meta

Test pre-trainded model

If you have organised the model and dataset as above, you should be able to run directly:

python predict.py

In predict.py, three python dictionaries are used to config the run:

  • net_config: network parameters
  • running_config: model location, batch_size
  • dataset_config: data locations, input modalities

Train your own model

To train your own model, run: python train.py

Similar to the prediction code, train.py has three python dictionaries to control the network structure and training:

  • net_config: network parameters
  • training_config: training configurations
  • dataset_config: data locations, input modalities

Results

Quanlitative resluts

Quantitative results on MICCAI MRBrianS2018 Dataset

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages