MixNet: Multi-modality Mix Network for Brain Segmentation
@inproceedings{LongMACCAIBrainLes,
author = {Long Chen, Dorit Merhof},
title = {MixNet: Multi-modality Mix Network for Brain Segmentation},
booktitle = {MICCAI Brainlesion Workshop (BrainLes)},
year = {2018},
}
MICCAI BrainLes Workshop
MICCAI MRBrainS2018 Challenge
MICCAI MRBrainS2013 Challenge
Institute of Imaging & Computer Vision, RWTH Aachen University
- tensorflow
- matplotlib
- scipy
- nibabel
The model is trained with MICCAI MRBrainS2013/MRBrainS2018 dataset. To train a model from scratch, you may also use these two datasets.
If you want to run the code directly, you should organise the dataset structure as following:
For the MICCAI MRBrainS2013 dataset:
├─ root
└─ MRBrainS2013
└─ trainingData
└─ 1
└─ (LabelsForTesting.nii, LabelsForTraining.nii, T1.nii, T1_1mm.nii, T1_IR.nii, T2_FLAIR.nii)
└─ 2
... ...
└─ testData
└─ 1
└─ (T1.nii, T1_1mm.nii, T1_IR.nii, T2_FLAIR.nii)
└─ 2
... ...
For the MICCAI MRBrainS2018 dataset:
├─ root
└─ MRBrainS2018
└─ trainingData
└─ 1
└─ segm.nii.gz
└─ pre
└─ (FLAIR.nii.gz, IR.nii.gz, reg_IR.nii.gz, reg_T1.nii.gz, T1.nii.gz)
└─ orig
└─ (FLAIR.nii.gz, IR.nii.gz, reg_3DT1_to_FLAIR.txt, reg_IR.nii.gz, reg_T1.nii.gz, T1.nii.gz, T1_mask.nii.gz)
└─ 4
... ...
If the data is not organised as above, you should change the dictionary dataset_config
in train.py
and predict.py
correspondingly.
Unzip the pretrained models in the model folder, like:
├─ root
└─ models
└─ model_2013_nopp
└─ checkpoint
└─ graph.pbtxt
└─ model.ckpt-257945.data-00000-of-00001
└─ model.ckpt-257945.index
└─ model.ckpt-257945.meta
If you have organised the model and dataset as above, you should be able to run directly:
python predict.py
In predict.py
, three python dictionaries are used to config the run:
- net_config: network parameters
- running_config: model location, batch_size
- dataset_config: data locations, input modalities
To train your own model, run:
python train.py
Similar to the prediction code, train.py
has three python dictionaries to control the network structure and training:
- net_config: network parameters
- training_config: training configurations
- dataset_config: data locations, input modalities