forked from OSOceanAcoustics/echopype
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: Add initial regrid_Sv implementation
- Loading branch information
Showing
4 changed files
with
187 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,7 +1,15 @@ | ||
from ..utils.misc import is_package_installed | ||
from .api import compute_MVBS, compute_MVBS_index_binning, compute_NASC | ||
|
||
__all__ = [ | ||
"compute_MVBS", | ||
"compute_NASC", | ||
"compute_MVBS_index_binning", | ||
] | ||
|
||
# Optional dependency, only import | ||
# if scitools-iris is installed | ||
if is_package_installed("iris"): | ||
from .regrid import regrid_Sv # noqa | ||
|
||
__all__.append("regrid_Sv") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,174 @@ | ||
from typing import Literal | ||
|
||
import iris # noqa | ||
import numpy as np | ||
import xarray as xr | ||
from iris.coords import DimCoord # noqa | ||
|
||
from ..utils.prov import echopype_prov_attrs, insert_input_processing_level | ||
|
||
FNAME = "filenames" | ||
CHANNEL = "channel" | ||
PING_TIME = "ping_time" | ||
RANGE_SAMPLE = "range_sample" | ||
ECHO_RANGE = "echo_range" | ||
DEPTH = "depth" | ||
Sv_var = "Sv" | ||
|
||
# Iris dims | ||
PROJECTION_X = "projection_x_coordinate" | ||
PROJECTION_Y = "projection_y_coordinate" | ||
|
||
|
||
def regrid_Sv( | ||
input_ds: xr.Dataset, | ||
target_grid: xr.Dataset, | ||
range_var: Literal["echo_range", "depth"] = ECHO_RANGE, | ||
) -> xr.Dataset: | ||
""" | ||
Regrid Sv data to a desired grid | ||
Parameters | ||
---------- | ||
input_ds : xr.Dataset | ||
The input dataset containing Sv data | ||
target_grid : xr.Dataset | ||
The target grid to regrid the data to, | ||
this dataset should only contain coordinates | ||
range_var : {'echo_range', 'depth'} | ||
The name of the range variable, by default "echo_range" | ||
Returns | ||
------- | ||
xr.Dataset | ||
The regridded dataset | ||
""" | ||
if FNAME in input_ds.dims: | ||
input_ds = input_ds.drop_dims(FNAME) | ||
|
||
# Get target dims | ||
target_dims = _get_iris_dims(target_grid, range_var) | ||
|
||
# Regrid each channel separately | ||
ds_list = [] | ||
for chan in input_ds[CHANNEL]: | ||
channel_Sv = input_ds.sel(channel=chan) | ||
original_dims = _get_iris_dims(channel_Sv, range_var) | ||
regrid_ds = _regrid_data(channel_Sv[Sv_var].data, original_dims, target_dims) | ||
ds_list.append(regrid_ds) | ||
|
||
# Convert back to match input dataset | ||
result_ds = xr.concat(ds_list, dim=CHANNEL).to_dataset(name=Sv_var) | ||
result_ds[Sv_var].attrs = { | ||
**input_ds[Sv_var].attrs, | ||
"actual_range": [ | ||
round(float(input_ds[Sv_var].min().values), 2), | ||
round(float(input_ds[Sv_var].max().values), 2), | ||
], | ||
} | ||
|
||
# Assign original coordinates back | ||
result_ds = result_ds.assign_coords( | ||
{ | ||
CHANNEL: input_ds[CHANNEL], | ||
PING_TIME: (PROJECTION_X, target_grid[PING_TIME].data, input_ds[PING_TIME].attrs), | ||
RANGE_SAMPLE: ( | ||
PROJECTION_Y, | ||
np.arange(0, len(target_grid[range_var])), | ||
input_ds[RANGE_SAMPLE].attrs, | ||
), | ||
} | ||
) | ||
|
||
# Swap dims back to original | ||
result_ds = result_ds.swap_dims( | ||
{ | ||
PROJECTION_Y: RANGE_SAMPLE, | ||
PROJECTION_X: PING_TIME, | ||
} | ||
).drop([PROJECTION_Y, PROJECTION_X]) | ||
|
||
# Re-attach some variables | ||
result_ds["frequency_nominal"] = input_ds["frequency_nominal"] # re-attach frequency_nominal | ||
result_ds[range_var] = ( | ||
(CHANNEL, PING_TIME, RANGE_SAMPLE), | ||
np.array( | ||
[[target_grid[range_var].data] * len(target_grid[PING_TIME])] * len(result_ds[CHANNEL]) | ||
), | ||
input_ds[range_var].attrs, | ||
) | ||
# Add water level if it exists in Sv dataset | ||
water_level = "water_level" | ||
if range_var == ECHO_RANGE and water_level in input_ds.data_vars: | ||
result_ds[water_level] = input_ds[water_level] | ||
|
||
# Add provenance related attributes | ||
prov_dict = echopype_prov_attrs(process_type="processing") | ||
prov_dict["processing_function"] = "commongrid.regrid_Sv" | ||
result_ds = result_ds.assign_attrs(prov_dict) | ||
result_ds = insert_input_processing_level(result_ds, input_ds=input_ds) | ||
|
||
return result_ds | ||
|
||
|
||
def _get_iris_dims(ds, range_var: Literal["echo_range", "depth"] = "echo_range"): | ||
range_dim = "range" | ||
|
||
# Original grid | ||
original_dims = [] | ||
for idx, dim in enumerate(ds.dims): | ||
data_array = ds[dim] | ||
kwargs = {} | ||
if dim == PING_TIME: | ||
if not np.issubdtype(data_array.dtype, np.datetime64): | ||
raise TypeError(f"Expected time dimension to be datetime64, got {data_array.dtype}") | ||
data_array = data_array.astype("float64") | ||
standard_name = PROJECTION_X | ||
elif (dim.startswith(range_dim) or dim.endswith(range_dim)) or dim == "depth": | ||
data_array = ds[range_var] | ||
if PING_TIME in data_array.dims: | ||
data_array = data_array.isel({PING_TIME: 0}) | ||
standard_name = PROJECTION_Y | ||
else: | ||
raise ValueError(f"Unknown dimension {dim}") | ||
kwargs.update( | ||
{ | ||
"standard_name": standard_name, | ||
"long_name": data_array.attrs.get("long_name", None), | ||
# "units": data_array.attrs.get("units", None), | ||
} | ||
) | ||
iris_dim = (DimCoord(data_array, **kwargs), idx) | ||
original_dims.append(iris_dim) | ||
return original_dims | ||
|
||
|
||
def _regrid_data(data, old_dims, new_dims, regridder=None): | ||
""" | ||
Regrid data with iris regridder | ||
Original code: https://github.com/CRIMAC-WP4-Machine-learning/CRIMAC-classifiers-unet/blob/master/crimac_unet/data_preprocessing/regridding.py#L35-L57 | ||
:param data: data to be regridded, 2D or 3D | ||
:param old_dims: old data dimensions (list of Iris DimCoord) | ||
:param new_dims: new data dimensions (list of Iris DimCoord) | ||
:param regridder: iris regrid algorithm | ||
:return: | ||
""" # noqa | ||
orig_cube = iris.cube.Cube(data, dim_coords_and_dims=old_dims) | ||
grid_cube = iris.cube.Cube( | ||
np.zeros([coord[0].shape[0] for coord in new_dims]), dim_coords_and_dims=new_dims | ||
) | ||
|
||
try: | ||
orig_cube.coord("projection_y_coordinate").guess_bounds() | ||
orig_cube.coord("projection_x_coordinate").guess_bounds() | ||
grid_cube.coord("projection_y_coordinate").guess_bounds() | ||
grid_cube.coord("projection_x_coordinate").guess_bounds() | ||
except ValueError: | ||
pass | ||
|
||
if regridder is None: | ||
regridder = iris.analysis.AreaWeighted(mdtol=1) | ||
regrid = orig_cube.regrid(grid_cube, regridder) | ||
regrid_ds = xr.DataArray.from_iris(regrid) | ||
return regrid_ds |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters