Skip to content

ltics/umplc

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

umplc

letrec x:T = t1 in t2

desuger to

let x:T = fix (λx:T. t1) in t2

desuger to

(λx:T. t2) (fix (λx:T. t1))

and through the definition of Fix-point that F f = f (F f), we can easily infer

fix (λx:T. e) = (λx:T. e) (fix (λx:T. e))

then entail the semantic of fix point

e[x → fix (λx:T. e)] ⇓ v
————————————————————————— (Fix)
  fix (λx:T. e) ⇓ v

and the type rule is pretty neat

  Γ[fix → ∀α. (α → α) → α, x → T] ⊢ e : T
———————————————————————————————————————————— (T-Fix)
            Γ ⊢ fix (λx:T. e) : T

lambda term can be easily construct use identifier, parameter type and body expression, so another AST structure to tackle fix point is also reasonable

e[x → fix x:T.e] ⇓ v
————————————————————————— (Fix)
  fix x:T.e ⇓ v
  Γ[fix → ∀α. (α → α) → α, x → T] ⊢ e : T
———————————————————————————————————————————— (T-Fix)
            Γ ⊢ fix x:T.e : T

About

No description or website provided.

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published