forked from PaddlePaddle/PaddleNLP
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[llm]add adam-mini (PaddlePaddle#9542)
* add adam-mini * fix following comments
- Loading branch information
Showing
10 changed files
with
253 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import paddle | ||
from paddle import pir | ||
from paddle.base import core, framework | ||
from paddle.base.framework import Variable, in_dynamic_or_pir_mode, in_pir_mode | ||
from paddle.base.libpaddle import DataType | ||
from paddle.optimizer.adamw import AdamW | ||
from paddle.pir import Value | ||
|
||
|
||
class AdamWMini(AdamW): | ||
def _add_moments_pows(self, p): | ||
acc_dtype = p.dtype | ||
if self._is_dtype_fp16_or_bf16(acc_dtype): | ||
acc_dtype = DataType.FLOAT32 if in_pir_mode() else paddle.float32 | ||
|
||
self._add_accumulator(self._moment1_acc_str, p, dtype=acc_dtype) | ||
# change moment2 | ||
self._add_accumulator(self._moment2_acc_str, p, dtype=acc_dtype, shape=[1]) | ||
try: | ||
type = core.VarDesc.VarType.DENSE_TENSOR | ||
except: | ||
type = core.VarDesc.VarType.LOD_TENSOR | ||
self._add_accumulator( | ||
name=self._beta1_pow_acc_str, | ||
param=p, | ||
dtype=acc_dtype, | ||
fill_value=0.9 if isinstance(self._beta1, (Variable, Value)) else self._beta1, | ||
shape=[1], | ||
type=type, | ||
device="cpu", | ||
) | ||
self._add_accumulator( | ||
name=self._beta2_pow_acc_str, | ||
param=p, | ||
dtype=acc_dtype, | ||
fill_value=0.999 if isinstance(self._beta2, (Variable, Value)) else self._beta2, | ||
shape=[1], | ||
type=type, | ||
device="cpu", | ||
) | ||
|
||
def _append_optimize_op(self, block, param_and_grad): | ||
assert isinstance(block, (framework.Block, pir.Block)) | ||
if isinstance(param_and_grad, dict): | ||
param_and_grad = self._update_param_group(param_and_grad) | ||
param = param_and_grad[0] | ||
|
||
# Whether we should do weight decay for the parameter. | ||
with_decay = True | ||
if self._apply_decay_param_fun is not None and not self._apply_decay_param_fun(param.name): | ||
with_decay = False | ||
|
||
moment1 = self._get_accumulator_master(self._moment1_acc_str, param_and_grad[0]) | ||
moment2 = self._get_accumulator_master(self._moment2_acc_str, param_and_grad[0]) | ||
beta1_pow_acc = self._get_accumulator_master(self._beta1_pow_acc_str, param_and_grad[0]) | ||
beta2_pow_acc = self._get_accumulator_master(self._beta2_pow_acc_str, param_and_grad[0]) | ||
find_master = self._multi_precision and self._is_dtype_fp16_or_bf16(param_and_grad[0].dtype) | ||
master_weight = self._master_weights[param_and_grad[0].name] if find_master else None | ||
lr = self._create_param_lr(param_and_grad) | ||
# create the adamw optimize op | ||
if in_dynamic_or_pir_mode(): | ||
lr_ratio_ = 1.0 if self._lr_ratio is None else self._lr_ratio(param_and_grad[0]) | ||
|
||
_beta1 = self._beta1 if not isinstance(self._beta1, Variable) else self._beta1.item(0) | ||
_beta2 = self._beta2 if not isinstance(self._beta2, Variable) else self._beta2.item(0) | ||
|
||
found_inf = self._get_auxiliary_var("found_inf") if in_pir_mode() else None | ||
self.adamw_python( | ||
param_and_grad[0], | ||
param_and_grad[1], | ||
lr, | ||
moment1, | ||
moment2, | ||
beta1_pow_acc, | ||
beta2_pow_acc, | ||
master_weight, | ||
found_inf, | ||
_beta1, | ||
_beta2, | ||
self._epsilon, | ||
lr_ratio_, | ||
self._weight_decay, | ||
with_decay, | ||
find_master, | ||
) | ||
return None | ||
else: | ||
raise NotImplementedError("Not implemented yet.") | ||
|
||
def adamw_python( | ||
self, | ||
param, | ||
grad, | ||
learning_rate, | ||
moment1, | ||
moment2, | ||
beta1_pow, | ||
beta2_pow, | ||
master_weight, | ||
skip_update, | ||
beta1, | ||
beta2, | ||
epsilon, | ||
lr_ratio, | ||
coeff, | ||
with_decay, | ||
multi_precision, | ||
): | ||
if skip_update: | ||
return | ||
if not with_decay: | ||
coeff = 0.0 | ||
if not multi_precision: | ||
master_weight = None | ||
lr = learning_rate * lr_ratio | ||
if master_weight is not None: | ||
p = master_weight | ||
else: | ||
p = param | ||
p *= 1.0 - lr * coeff | ||
mom1 = moment1 | ||
mom2 = moment2 | ||
|
||
mom1 = beta1 * mom1 + (1.0 - beta1) * grad | ||
mom2 = beta2 * mom2 + (1.0 - beta2) * (grad * grad).mean() | ||
denom = mom2.sqrt() / (1.0 - beta2_pow).sqrt() + epsilon | ||
p += (moment1 / denom) * (-(lr / (1.0 - beta1_pow))) | ||
if master_weight is not None: | ||
master_weight[:] = p | ||
param[:] = p.astype(param.dtype) | ||
else: | ||
param[:] = p | ||
moment1[:] = mom1 | ||
moment2[:] = mom2 | ||
beta1_pow[:], beta2_pow[:] = beta1 * beta1_pow[:], beta2 * beta2_pow[:] | ||
# 看看怎么更新 | ||
return |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,35 @@ | ||
finetune: | ||
base: | ||
dataset_name_or_path: "./data" | ||
per_device_train_batch_size: 4 | ||
gradient_accumulation_steps: 4 | ||
per_device_eval_batch_size: 8 | ||
eval_accumulation_steps: 16 | ||
num_train_epochs: 3 | ||
learning_rate: 3e-05 | ||
warmup_steps: 30 | ||
logging_steps: 1 | ||
evaluation_strategy: "epoch" | ||
save_strategy: "epoch" | ||
src_length: 1024 | ||
max_length: 2048 | ||
fp16: true | ||
fp16_opt_level: "O2" | ||
do_train: true | ||
do_eval: true | ||
use_flash_attention: true | ||
disable_tqdm: true | ||
load_best_model_at_end: true | ||
eval_with_do_generation: false | ||
metric_for_best_model: "accuracy" | ||
recompute: true | ||
refined_recompute: "flash_attn:-1" | ||
save_total_limit: 1 | ||
tensor_parallel_degree: 1 | ||
pipeline_parallel_degree: 1 | ||
ignore_save_lr_and_optim: 1 | ||
optim: "adamw_mini" | ||
|
||
default: | ||
llama: | ||
model_name_or_path: __internal_testing__/tiny-random-llama |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
# Copyright (c) 2024 PaddlePaddle Authors. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
from __future__ import annotations | ||
|
||
import sys | ||
import unittest | ||
|
||
from parameterized import parameterized_class | ||
|
||
from tests.testing_utils import argv_context_guard, load_test_config | ||
|
||
from .testing_utils import LLMTest | ||
|
||
|
||
@parameterized_class( | ||
["model_dir"], | ||
[ | ||
["llama"], | ||
], | ||
) | ||
class FinetuneTest(LLMTest, unittest.TestCase): | ||
config_path: str = "./tests/fixtures/llm/adamw_mini.yaml" | ||
model_dir: str = None | ||
|
||
def setUp(self) -> None: | ||
LLMTest.setUp(self) | ||
|
||
sys.path.insert(0, self.model_dir) | ||
|
||
def tearDown(self) -> None: | ||
LLMTest.tearDown(self) | ||
|
||
def test_finetune(self): | ||
finetune_config = load_test_config(self.config_path, "finetune", self.model_dir) | ||
|
||
finetune_config["dataset_name_or_path"] = self.data_dir | ||
finetune_config["output_dir"] = self.output_dir | ||
|
||
with argv_context_guard(finetune_config): | ||
from run_finetune import main | ||
|
||
main() |