Tourmaline is an amplicon sequence processing workflow for Illumina sequence data that uses QIIME 2 and the software packages it wraps. Tourmaline manages commands, inputs, and outputs using the Snakemake workflow management system.
The current version of Tourmaline supports qiime2-2023.5. To use previous versions of Qiime2, check out previous Tourmaline versions under Releases.
Tourmaline has several features that enhance usability and interoperability:
- Portability. Native support for Linux and macOS in addition to Docker containers.
- QIIME 2. The core commands of Tourmaline, including the DADA2 and Deblur packages, are all commands of QIIME 2, one of the most popular amplicon sequence analysis software tools available. You can print all of the QIIME 2 and other shell commands of your workflow before or while running the workflow.
- Snakemake. Managing the workflow with Snakemake provides several benefits:
- Configuration file contains all parameters in one file, so you can see what your workflow is doing and make changes for a subsequent run.
- Directory structure is the same for every Tourmaline run, so you always know where your outputs are.
- On-demand commands mean that only the commands required for output files not yet generated are run, saving time and computation when re-running part of a workflow.
- Parameter optimization. The configuration file and standard directory structure make it simple to test and compare different parameter sets to optimize your workflow. Included code helps choose read truncation parameters and identify outliers in representative sequences (ASVs).
- Visualizations and reports. Every Tourmaline run produces an HTML report containing a summary of your metadata and outputs, with links to web-viewable QIIME 2 visualization files.
- Downstream analysis. Analyze the output of single or multiple Tourmaline runs programmatically, with qiime2R in R or the QIIME 2 Artifact API in Python, using the provided R and Python notebooks or your own code.
If you have used QIIME 2 before, you might be wondering which QIIME 2 commands Tourmaline uses and supports. All commands are specified as rules in Snakefile
, and typical workflows without and with sequence filtering are shown as directed acyclic graphs in the folder dags
. The main analysis features and options supported by Tourmaline and specified by the Snakefile are as follows:
- FASTQ sequence import using a manifest file, or use your pre-imported FASTQ .qza file
- Denoising with DADA2 (paired-end and single-end) and Deblur (single-end)
- Feature classification (taxonomic assignment) with options of naive Bayes, consensus BLAST, and consensus VSEARCH
- Feature filtering by taxonomy, sequence length, feature ID, and abundance/prevalence
- De novo multiple sequence alignment with MUSCLE5, Clustal Omega, or MAFFT (with masking) and tree building with FastTree
- Outlier detection with odseq
- Interactive taxonomy barplot
- Tree visualization using Empress
- Alpha diversity, alpha rarefaction, and alpha group significance with four metrics: Faith's phylogenetic diversity, observed features, Shannon diversity, and Pielou’s evenness
- Beta diversity distances, principal coordinates, Emperor plots, and beta group significance (one metadata column) with four metrics: unweighted and weighted UniFrac, Jaccard distance, and Bray–Curtis distance
- Robust Aitchison PCA and biplot ordination using DEICODE
Please cite our paper in GigaScience:
- Thompson, L. R., Anderson, S. R., Den Uyl, P. A., Patin, N. V., Lim, S. J., Sanderson, G. & Goodwin, K. D. Tourmaline: A containerized workflow for rapid and iterable amplicon sequence analysis using QIIME 2 and Snakemake. GigaScience, Volume 11, 2022, giac066, https://doi.org/10.1093/gigascience/giac066.
If this is your first time using Tourmaline or Snakemake, you may want to browse through the Wiki for a detailed walkthrough. If you want to get started right away, check out the Quick Start below and follow along with the video tutorial on YouTube.
Tourmaline provides Snakemake rules for DADA2 (single-end and paired-end) and Deblur (single-end). For each type of processing, there are four steps:
- the denoise rule imports FASTQ data and runs denoising, generating a feature table and representative sequences;
- the taxonomy rule assigns taxonomy to representative sequences;
- the diversity rule does representative sequence curation, core diversity analyses, and alpha and beta group significance; and
- the report rule generates an HTML report of the outputs plus metadata, inputs, and parameters. Also, the report rule can be run immediately to run the entire workflow.
Steps 2–4 have unfiltered and filtered modes, the difference being that in the taxonomy step of filtered mode, undesired taxonomic groups or individual sequences from the representative sequences and feature table are removed. The diversity and report rules are the same for unfiltered and filtered modes, except the output goes into separate subdirectories.
The current version of Tourmaline supports qiime2-2023.5. To use previous versions of Qiime2, check out previous Tourmaline versions under Releases.
Before you download the Tourmaline commands and directory structure from GitHub, you first need to install QIIME 2, Snakemake, and the other dependencies of Tourmaline. Two options are provided: a native installation on a Mac or Linux system and a Docker image/container. If you have an Apple Silicon chip (M1, M2 Macs), the instructions to install QIIME 2 vary slightly.
To run Tourmaline natively on a Mac (Intel) or Linux system, start with a Conda installation of Snakemake.
conda create -c conda-forge -c bioconda -n snakemake snakemake-minimal
Then install QIIME 2 with conda (for Linux, change "osx" to "linux"):
wget https://data.qiime2.org/distro/core/qiime2-2023.5-py38-osx-conda.yml
conda env create -n qiime2-2023.5 --file qiime2-2023.5-py38-osx-conda.yml
Activate the qiime2-2023.5 environment and install the other Conda- or PIP-installable dependencies:
conda activate qiime2-2023.5
conda install -c conda-forge -c bioconda biopython muscle clustalo tabulate
conda install -c conda-forge deicode
pip install empress
qiime dev refresh-cache
conda install -c bioconda bioconductor-msa bioconductor-odseq
Follow these instructions for Macs with M1/M2 chips.
First, set your Terminal application to run in Rosetta mode.
wget https://data.qiime2.org/distro/core/qiime2-2023.5-py38-osx-conda.yml
CONDA_SUBDIR=osx-64 conda env create -n qiime2-2023.5 --file qiime2-2023.5-py38-osx-conda.yml
conda activate qiime2-2023.5
conda config --env --set subdir osx-64
Then continue to install the other Conda- or PIP-installable dependencies.
To run Tourmaline inside a Docker container:
- Install Docker Desktop (Mac, Windows, or Linux) from Docker.com.
- Open Docker app.
- Increase the memory to 8 GB or more (Preferences -> Resources -> Advanced -> Memory).
- Download the Docker image from DockerHub (command below).
- Run the Docker image (command below).
docker pull aomlomics/tourmaline
docker run -v $HOME:/data -it aomlomics/tourmaline
If installing on a Mac with an Apple M1 chip, run the Docker image with the --platform linux/amd64
command. It will take a few minutes for the image to load the first time it is run.
docker run --platform linux/amd64 -v $HOME:/data -it aomlomics/tourmaline
The -v
(volume) flag above allows you to mount a local file system volume (in this case your home directory) to read/write from your container. Note that symbolic links in a mounted volume will not work.
Use mounted volumes to:
- copy metadata and manifest files to your container;
- create symbolic links from your container to your FASTQ files and reference database;
- copy your whole Tourmaline directory out of the container when the run is completed (alternatively, you can clone the Tourmaline directory inside the mounted volume).
See the Install page for more details on installing and running Docker.
If this is your first time running Tourmaline, you'll need to set up your directory. Simplified instructions are below, but see the Wiki's Setup page for complete instructions.
Start by cloning the Tourmaline directory and files:
git clone https://github.com/aomlomics/tourmaline.git
If using the Docker container, it's recommended you run the above command from inside /data
.
The test data (16 samples of paired-end 16S rRNA data with 1000 sequences per sample) comes with your cloned copy of Tourmaline. It's fast to run and will verify that you can run the workflow.
Download reference database sequence and taxonomy files, named refseqs.qza
and reftax.qza
(QIIME 2 archives), in 01-imported
:
cd tourmaline/01-imported
wget https://data.qiime2.org/2023.5/common/silva-138-99-seqs-515-806.qza
wget https://data.qiime2.org/2023.5/common/silva-138-99-tax-515-806.qza
ln -s silva-138-99-seqs-515-806.qza refseqs.qza
ln -s silva-138-99-tax-515-806.qza reftax.qza
Edit FASTQ manifests manifest_se.csv
and manifest_pe.csv
in 00-data
so file paths match the location of your tourmaline
directory. In the command below, replace /path/to
with the location of your tourmaline
directory—or skip this step if you are using the Docker container and you cloned tourmaline
into /data
:
cd ../00-data
cat manifest_pe.csv | sed 's|/data/tourmaline|/path/to/tourmaline|' > temp && mv temp manifest_pe.csv
cat manifest_pe.csv | grep -v "reverse" > manifest_se.csv
Go to Run Snakemake.
Before setting up to run your own data, please note:
- Symbolic links can be used for any of the input files, which may be useful for large files (e.g., the FASTQ and reference database .qza files).
- If you plan on using Deblur, sample names must not contain underscores (only alphanumerics, dashes, and/or periods).
Now edit, replace, or store the required input files as described here:
- Edit or replace the metadata file
00-data/metadata.tsv
. The first column header should be "sample_name", with sample names matching the FASTQ manifest(s), and additional columns containing any relevant metadata for your samples. You can use a spreadsheet editor like Microsoft Excel or LibreOffice, but make sure to export the output in tab-delimited text format. - Prepare FASTQ data:
- Option 1: Edit or replace the FASTQ manifests
00-data/manifest_pe.csv
(paired-end) and/or00-data/manifest_se.csv
(single-end). Ensure that (1) file paths in the column "absolute-filepath" point to your .fastq.gz files (they can be anywhere on your computer) and (2) sample names match the metadata file. You can use a text editor such as Sublime Text, nano, vim, etc. - Option 2: Store your pre-imported FASTQ .qza files as
01-imported/fastq_pe.qza
(paired-end) and/or01-imported/fastq_se.qza
(single-end).
- Option 1: Edit or replace the FASTQ manifests
- Prepare reference database:
- Option 1: Store the reference FASTA and taxonomy files as
00-data/refseqs.fna
and00-data/reftax.tsv
. - Option 2: Store the pre-imported reference FASTA and taxonomy .qza files as
01-imported/refseqs.qza
and01-imported/reftax.qza
.
- Option 1: Store the reference FASTA and taxonomy files as
- Edit the configuration file
config.yaml
to set DADA2 and/or Deblur parameters (sequence truncation/trimming, sample pooling, chimera removal, etc.), rarefaction depth, taxonomic classification method, and other parameters. This YAML (yet another markup language) file is a regular text file that can be edited in Sublime Text, nano, vim, etc. - Go to Run Snakemake.
Tourmaline is now run within the snakemake conda environment, not the qiime2-2023.5 environment.
conda activate snakemake
Shown here is the DADA2 paired-end workflow. See the Wiki's Run page for complete instructions on all steps, denoising methods, and filtering modes.
Note that any of the commands below can be run with various options, including --printshellcmds
to see the shell commands being executed and --dryrun
to display which rules would be run but not execute them. To generate a graph of the rules that will be run from any Snakemake command, see the section "Directed acyclic graph (DAG)" on the Run page. Always include the --use-conda option.
From the tourmaline
directory (which you may rename), run Snakemake with the denoise rule as the target, changing the number of cores to match your machine:
snakemake --use-conda dada2_pe_denoise --cores 4
Pausing after the denoise step allows you to make changes before proceeding:
- Check the table summaries and representative sequence lengths to determine if DADA2 or Deblur parameters need to be modified. If so, you can rename or delete the output directories and then rerun the denoise rule.
- View the table visualization to decide an appropriate subsampling (rarefaction) depth. Then modify the parameters "alpha_max_depth" and "core_sampling_depth" in
config.yaml
. - Decide whether to filter your feature table and representative sequences by taxonomy or feature ID. After the taxonomy step, you can examine the taxonomy summary and bar plot to aid your decision. If you do filter your data, all output from that point on will go in a separate folder so you can compare output with and without filtering.
Continue the workflow without filtering (for now). If you are satisfied with your parameters and files, run the taxonomy rule (for unfiltered data):
snakemake --use-conda dada2_pe_taxonomy_unfiltered --cores 4
Next, run the diversity rule (for unfiltered data):
snakemake --use-conda dada2_pe_diversity_unfiltered --cores 4
Finally, run the report rule (for unfiltered data):
snakemake --use-conda dada2_pe_report_unfiltered --cores 4
After viewing the unfiltered results—the taxonomy summary and taxa barplot, the representative sequence summary plot and table, or the list of unassigned and potential outlier representative sequences—the user may wish to filter (remove) certain taxonomic groups or representative sequences. If so, the user should first check the following parameters and/or files:
- copy
2-output-dada2-pe-unfiltered/02-alignment-tree/repseqs_to_filter_outliers.tsv
to00-data/repseqs_to_filter_dada2-pe.tsv
to filter outliers, or manually include feature IDs in00-data/repseqs_to_filter_dada2-pe.tsv
to filter those feature IDs (change "dada2-pe" to "dada2-se" or "deblur-se" as appropriate); exclude_terms
inconfig.yaml
– add taxa to exclude from representative sequences, if desired;repseq_min_length
andrepseq_max_length
inconfig.yaml
– set minimum and/or maximum lengths for filtering representative sequences, if desired;repseq_min_abundance
andrepseq_min_prevalence
inconfig.yaml
– set minimum abundance and/or prevalence values for filtering representative sequences, if desired.
Now we are ready to filter the representative sequences and feature table, generate new summaries, and generate a new taxonomy bar plot, by running the taxonomy rule (for filtered data):
snakemake --use-conda dada2_pe_taxonomy_filtered --cores 4
Next, run the diversity rule (for filtered data):
snakemake --use-conda dada2_pe_diversity_filtered --cores 4
Finally, run the report rule (for filtered data):
snakemake --use-conda dada2_pe_report_filtered --cores 1
Open your HTML report (e.g., 03-reports/report_dada2-pe_unfiltered.html
) in Chrome{target="_blank"} or Firefox{target="_blank"}. To view the linked files:
- QZV (QIIME 2 visualization): click to download, then drag and drop in https://view.qiime2.org{target="_blank"}. Empress trees (e.g.,
rooted_tree.qzv
) may take more than 10 minutes to load. - TSV (tab-separated values): click to download, then open in Microsoft Excel or Tabview (command line tool that comes with Tourmaline).
- PDF (portable document format): click to open and view in new tab.
Downloaded files can be deleted after viewing because they are already stored in your Tourmaline directory.
- The whole workflow with test data should take ~3–5 minutes to complete. A normal dataset may take several hours to complete.
- If any of the above commands don't work, read the error messages carefully, try to figure out what went wrong, and attempt to fix the offending file. A common issue is the file paths in your FASTQ manifest file need to be updated.
- If you are running in a Docker container and you get an error like "Signals.SIGKILL: 9", you probably need to give Docker more memory. See the Wiki section on Installation options.
-
The whole workflow can be run with just the command
snakemake dada2_pe_report_unfiltered
(without filtering representative sequences) orsnakemake dada2_pe_report_filtered
(after filtering representative sequences). Warning: If your parameters are not optimized, the results will be suboptimal (garbage in, garbage out). -
If you want to make a fresh run and not save the previous output, simply delete the output directories (e.g.,
02-output-{method}-{filter}
and03-report
) generated in the previous run. If you want to save these outputs and rerun with different parameters, you can change the name of the output directories and report files to something informative and leave them in the Tourmaline directory. -
You can always delete any file you want to regenerate. Then there are several ways to regenerate it: run
snakemake FILE
and Snakemake will determine which rules (commands) need to be run to generate that file; or, runsnakemake RULE
where the rule generates the desired file as output. -
If you've run Tourmaline on your dataset before, you can speed up the setup process and initialize a new Tourmaline directory (e.g.,
tourmaline-new
) with the some of the files and symlinks of the existing one (e.g.,tourmaline-existing
) using the command below:cd /path/to/tourmaline-new scripts/initialize_dir_from_existing_tourmaline_dir.sh /path/to/tourmaline-existing
You may get error messages if some files don't exist, but it should have copied the files that were there. The files that will be copied from the existing directory to the new directory are:
config.yaml 00-data/manifest_pe.csv 00-data/manifest_se.csv 00-data/metadata.tsv 00-data/repseqs_to_filter_dada2-pe.tsv 00-data/repseqs_to_filter_dada2-se.tsv 00-data/repseqs_to_filter_deblur-se.tsv 01-imported/refseqs.qza 01-imported/reftax.qza 01-imported/classifier.qza
Ensure you make any changes to your configuration file and (if necessary) delete any files you want to be regenerated before you run Snakemake. If you copy over output files from a previous Tourmaline run manually that you do not want to be regenerated (eg,
02-output-{method}-unfiltered
), you should use thecp -p
flag to preserve timestamps.cp -rp tourmaline-old/02-output-dada2-pe-unfiltered/ tourmaline-new/
Some alternative pipelines for amplicon sequence analysis include the following:
- Anacapa Toolkit from UCLA: https://github.com/limey-bean/Anacapa
- Banzai from MBON: https://github.com/jimmyodonnell/banzai
- Tagseq QIIME 2 Snakemake workflow: https://github.com/shu251/tagseq-qiime2-snakemake