Skip to content

Latest commit

 

History

History
58 lines (36 loc) · 1.58 KB

README.md

File metadata and controls

58 lines (36 loc) · 1.58 KB

ogbl-ppa

We combine node labels with scores calculated by local similarity measures and use a simple MLP for the link prediction task which can obtain good performance.

Requirements

Python>=3.6

Pytorch>=1.4

torch-geometric>=1.6.0

ogb>=1.3.1

Generate Feature

python generate_feature.py

Train and Predict

python train.py --sim all

Results

We conduct the experiments for 10 times with the random seed 0~9 and results are listed below:

Model Test Hits@100 Val Hits@100
MLP+CN 0.3064±0.0116 0.3161±0.0070
MLP+RA 0.4896±0.0048 0.4794±0.0029
MLP+AA 0.3459±0.0033 0.3454±0.0029
MLP+RA&CN&AA 0.5062±0.0035 0.4906±0.0029

ogbl-ddi

We use multiple anchor sets selected from random sampling to encode distance information for edges on graph. We also modify the aggregation stage of GraphSAGE to incorporate edge information.

Train and Predict

To get the best performance, run:

python link_pred_ddi_graphsage_edge.py --node_emb 512 --hidden_channels 512 --num_samples 3

Results

Model Test Hits@20 Val Hits@20
GraphSAGE+Edge Attr(k=1) 0.8633±0.0313 0.7916±0.0324
GraphSAGE+Edge Attr(k=3) 0.8781±0.0474 0.8044±0.0404
GraphSAGE+Edge Attr(k=5) 0.8527±0.0247 0.7839±0.0278