Skip to content

lustoo/OGB_link_prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 

Repository files navigation

ogbl-ppa

We combine node labels with scores calculated by local similarity measures and use a simple MLP for the link prediction task which can obtain good performance.

Requirements

Python>=3.6

Pytorch>=1.4

torch-geometric>=1.6.0

ogb>=1.3.1

Generate Feature

python generate_feature.py

Train and Predict

python train.py --sim all

Results

We conduct the experiments for 10 times with the random seed 0~9 and results are listed below:

Model Test Hits@100 Val Hits@100
MLP+CN 0.3064±0.0116 0.3161±0.0070
MLP+RA 0.4896±0.0048 0.4794±0.0029
MLP+AA 0.3459±0.0033 0.3454±0.0029
MLP+RA&CN&AA 0.5062±0.0035 0.4906±0.0029

ogbl-ddi

We use multiple anchor sets selected from random sampling to encode distance information for edges on graph. We also modify the aggregation stage of GraphSAGE to incorporate edge information.

Train and Predict

To get the best performance, run:

python link_pred_ddi_graphsage_edge.py --node_emb 512 --hidden_channels 512 --num_samples 3

Results

Model Test Hits@20 Val Hits@20
GraphSAGE+Edge Attr(k=1) 0.8633±0.0313 0.7916±0.0324
GraphSAGE+Edge Attr(k=3) 0.8781±0.0474 0.8044±0.0404
GraphSAGE+Edge Attr(k=5) 0.8527±0.0247 0.7839±0.0278

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages