import pJITAI
# Create a new session to an existing API service
session = pJITAI.Client(server='http://localhost/api', service_id='028fa04c-943d-4ae3-9885-55b4bdf4337e',
service_token='e6e74d36-a3e4-4631-b077-4fdd703636f2')
# Upload some data
data = {
'decision': 1,
'decision_timestamp': '2022-06-01T08:30:00-05:00',
'proximal_outcome': 45,
'proximal_outcome_timestamp': '2022-06-01T09:00:00-05:00',
'timestamp': '2022-06-01T09:05:00-05:00',
'user_id': 'user_0',
'values': [{
'name': 'step_count',
'value': 229
}]
}
try:
data_to_upload = pJITAI.DataVector.from_dict(data)
session.upload(data_to_upload)
print(data_to_upload)
except Exception as e:
print(f'Upload Exception: {e}')
# Ask the server to generated a decision
data = {
'timestamp': '2022-06-01T08:30:00-05:00',
'user_id': 'user_0',
'values': [{
'name': 'step_count',
'value': 24
}]
}
try:
decision = pJITAI.DecisionVector.from_dict(data)
session.decision(decision)
print(decision)
except Exception as e:
print(f'Upload Exception: {e}')
# Have the server update the model parameters based on already uploaded data
try:
session.update()
except Exception as e:
print(f'Upload Exception: {e}')
bumpver update -p
python3 -m build
twine check dist/*
twine upload dist/*