Skip to content

Code and data for: Baranger, D.A.A., et al Neuroimage: Clinical (2021). Aberrant levels of cortical myelin distinguish individuals with depressive disorders from healthy controls.

Notifications You must be signed in to change notification settings

manelis-lab/myelin-paper-NICL2021

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Code and data for: Baranger DAA, Halchenko YO, Satz S, Ragozzino R, Iyengar S, Swartz HA, Manelis A. Aberrant levels of cortical myelin distinguish individuals with depressive disorders from healthy controls. NeuroImage: Clinical (2021) 32:102790. doi:10.1016/J.NICL.2021.102790

FOLDER STRUCTURE

MethodX_data/:

data/
  mri_derivatives/
    primary/ses-01 ** surface-level T1w/T2w ratio and cortical thickness images for subjects in primary analyses
    followup/      ** surface-level T1w/T2w ratio and cortical thickness images for the subject with follow-up data who converted
      ses-01/      ** follow-up subject session 1
      ses-02/      ** follow-up subject session 2
  other_input/     ** clinical, demographic, and parcellated T1w/T2w ratio data
outputs/
  cvs/              ** output of posthoc analyses varying the number of cross-validation folds
    loocv_inneronly ** output of posthoc analyses varying the number of inner cross-validation folds
  glmnet/           ** output of primary glmnet analysis
  permutations/     ** output of permutation analyses
  preprocessing/    ** output of preprocessing outlier detection
  regressions/      ** output of regression analyses
scripts/
  analyses/         ** scripts for primary analyses, including glmnet, permutations, and regressions
  figures/          ** scripts to create figures in the paper
  followup/         ** scripts for post hoc analyses
  preprocessing/    ** scripts for parcellating mri derivative files and outlier detection

FOLDER CONTENTS

MethodX_data/data/mri_derivatives/primary/ses-01/sub-*/
  sub-*.L.midthickness.32k_fs_LR.surf.gii           ** left cortical thickness file
  sub-*.R.midthickness.32k_fs_LR.surf.gii           ** right cortical thickness file
  sub-*.SmoothedMyelinMap_BC.32k_fs_LR.dscalar.nii  ** cortical myelin cifti file

MethodX_data/data/other_input/
  converted_participant_parcels_bothsessions.xlsx ** Cortical myelin values for the follow-up subject who converted
  data_360parcels_Glasser32K.csv                  ** Cortical myelin for 360 Glasser parcels, output of scripts/preprocessing/parcellate.R
  data_clinical_and_parcels_all.csv               ** Participant demographics, clinical variables, and cortical myelin values
  data_dictionary.csv                             ** Description of columns in data_clinical_and_parcels_all.csv  
  ElasticNet_variables.csv                        ** All variables used for elastic net analyses
  glmnet_performance.csv                          ** Performance metrics for glmnet/LDA classifier

MethodX_data/outputs/cvs/
  glmnet_leave-one-out_nested_1uniquepair_removed_HC_UD_[x]_outer_[y]_internalfolds_2021-07-02.txt  
       ** output of follow up analyses, varying both the internal [y] and outer [x] cv folds

MethodX_data/outputs/cvs/loocv_inneronly/
  glmnet_leave-one-out_nested_1uniquepair_removed_HC_UD_[i]_internalfolds_2021-07-02.txt 
       ** output of follow up analyses, varying the number of inner cv folds [i] (retaining 2 pairs held-out)

MethodX_data/outputs/glmnet/
  glmnet_variable_selection.csv                                                           ** frequency of variable selection in true and permutation analyses
  glmnet_with_age_sex_iq_leave-one-out_nested_1uniquepair_removed_HC_UD_2020-11-26.txt    ** main results, output of scripts/analyses/glmnet_with_LDA_myelin_paper.R
  predict.followup.txt                                                                    ** predicted class for followup participant who converted mid-study

MethodX_data/outputs/permutations/
  split[i]_glmnet_permuted_labels_10times_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22 ** Outputs of permutation analyses (100 permutations per file)
  split[i]_glmnet_permuted_sets_10times_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22   ** Outputs of permutation analyses (100 permutations per file) - record of all permutation combinations
  glmnet_permuted_labels_100times_for_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22.txt ** Combined all label files
  glmnet_permuted_sets_100times_for_leave-one-out_nested_with_age_sex_iq_1uniquepair_removed_HC_UD_2021-02-22.txt   ** Combined all set files

MethodX_data/outputs/preprocessing/
  outlier.results.csv   ** results of parcel outlier detection

MethodX_data/outputs/regressions/
  regression_dd_control_myelin.csv            ** results of regression analyses between control/dd and myelin
  regression_demo_clin_myelin.csv             ** results of regression analyses between clinical/demographic variables and myelin
  regression_performance_myelin.csv           ** results of regression analyses between lda accuracy and myelin

MethodX_data/scripts/analyses/
  glmnet_with_LDA_myelin_paper.R              ** Nested cross-validation elastic net regression with LDA (primary analysis)
  permuted_glmnet_with_LDA_myelin_paper.R     ** Permutation analyses
  process_glmnet_output.R                     ** Compute performance metrics of the primary analysis
  regression_lda_performance_and_clinical.R   ** Regression analyses between model accuracy and clinical variables
  regression_myelin_and_clinical.R            ** Regression analyses between cortical myelin and clinical variables
  regression_myelin_patients_vs_controls.R    ** regression analyses comparing myelin values in patients and controls

MethodX_data/scripts/figures/
  brain_plot.R                     ** Code for Figure 3
  performance_plots.R              ** Code for Figure 2
  plot_antidepressants.R           ** Code for Supplemental Figure 3

MethodX_data/scripts/followup/
  glmnet_with_LDA_myelin_paper_cvs_outerloop.R      ** repeating the glmnet analyses, varying both the number of inner and outer cv folds
  glmnet_with_LDA_myelin_paper_cvs.R                ** repeating the glmnet analyses, varying the number of inner cv folds
  Predict_converted.R                               ** predict the group (control, DD) of the participant who converted
  process_cvs_parcels.R                             ** process the output of glmnet_with_LDA_myelin_paper_cvs.R & glmnet_with_LDA_myelin_paper_cvs_outerloop.R

MethodX_data/scripts/preprocessing/
  outlier_regions.R                    ** Detects outlier parcels
  parcellate.R                         ** Parcellate mri derivative files to compute mean T1w/T2w ratio value for each parcel

Other needed files

https://balsa.wustl.edu/88mp ** Glasser 360 parcellation atlas

About

Code and data for: Baranger, D.A.A., et al Neuroimage: Clinical (2021). Aberrant levels of cortical myelin distinguish individuals with depressive disorders from healthy controls.

Resources

Stars

Watchers

Forks

Languages