Skip to content

marcelja/dynamicpricing

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Data-Driven Demand Learning and Dynamic Pricing Strategies in Competitive Markets

The main merchant is Random Forest (merchant/rand_for.py or merchant/demand_learning.py).

Setup

  • Install Python 3.6 or create virtual environment (e.g. virtualenv -p python3.6 env and source env/bin/activate)
  • pip install -r requirements.txt
  • cd merchant
  • Run tests: python -m unittest

Start merchant on platform

  • Go to http://vm-mpws2016hp1-02.eaalab.hpi.uni-potsdam.de/#/deployment
  • Merchant API: http://vm-dynpricing-team-8.eaalab.hpi.uni-potsdam.de:<PORT>
  • Set environment variables:
export PRICEWARS_MARKETPLACE_URL="vm-mpws2016hp1-04.eaalab.hpi.uni-potsdam.de:8080/marketplace"
export PRICEWARS_PRODUCER_URL="vm-mpws2016hp1-03.eaalab.hpi.uni-potsdam.de"
export PRICEWARS_KAFKA_REVERSE_PROXY_URL="vm-mpws2016hp1-05.eaalab.hpi.uni-potsdam.de:8001"
export API_TOKEN="<API TOKEN>"
  • python rand_for.py --port <PORT>
  • Go to http://vm-mpws2016hp1-02.eaalab.hpi.uni-potsdam.de/index.html#/config/merchant and start merchant

Reset merchant

  • Stop server (Ctrl+C)
  • rm ../tmp/*
  • Start server (python rand_for.py --port <PORT>)

CSV interface

  • rm ../tmp/*
  • python rand_for.py --train <train_offers.csv> --buy <buy_offers.csv> --merchant <merchant_id> --test <test_offers.csv> --output out.txt

About

This is the best merchant of all time

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published