A PyTorch implementation of ScanSSD Scanning Single Shot MultiBox Detector by Parag Mali. It was developed using SSD implementation by Max deGroot.
Developed using Cuda 9.1.85 and Pytorch 1.1.0
- Install PyTorch
- Clone this repository. Requires Python3
- Download the dataset by following the instructions on (https://github.com/MaliParag/TFD-ICDAR2019).
- Install Visdom for real-time loss visualization during training!
- To use Visdom in the browser:
# First install Python server and client pip install visdom # Start the server (probably in a screen or tmux) python -m visdom.server
- Then (during training) navigate to http://localhost:8097/ (see the Train section below for training details).
SSD model is built in ssd.py
. Training and testing the SSD is managed in train.py
and test.py
. All the training code is in layers
directory. Hyper-parameters for training and testing can be specified through command line and through config.py
file inside data
directory.
data
directory also contains gtdb_new.py
data reader that uses sliding windows to generates sub-images of page for training. All the scripts regarding stitching the sub-image level detections are in gtdb
directory.
Functions for data augmentation, visualization of bounding boxes and heatmap are in utils
.
If you are not sure how to setup data, use dir_struct file. It has the one of the possible directory structure that you can use for setting up data for training and testing.
To generate .pmath files or .pchar files you can use this script.
-
First download the fc-reduced VGG-16 PyTorch base network weights here
-
By default, we assume you have downloaded the file in the
scanssd/weights
dir: -
Run command
python3 train.py
--dataset GTDB
--dataset_root ~/data/GTDB/
--cuda True
--visdom True
--batch_size 16
--num_workers 4
--exp_name IOU512_iter1
--model_type 512
--training_data training_data
--cfg hboxes512
--loss_fun ce
--kernel 1 5
--padding 0 2
--neg_mining True
--pos_thresh 0.75
- Note:
- For training, an NVIDIA GPU is strongly recommended for speed.
- For instructions on Visdom usage/installation, see the Installation section.
- You can pick-up training from a checkpoint by specifying the path as one of the training parameters (again, see
train.py
for options)
For quick testing, pre-trained weights are available here.
To test a trained network:
python3 test.py
--dataset_root ../
--trained_model HBOXES512_iter1GTDB.pth
--visual_threshold 0.25
--cuda True
--exp_name test_real_world_iter1
--test_data testing_data
--model_type 512
--cfg hboxes512
--padding 3 3
--kernel 1 1
--batch_size 8
You can specify the parameters listed in the eval.py
file by flagging them or manually changing them.
python3 <Workspace>/ssd/gtdb/stitch_patches_pdf.py
--data_file <Workspace>/train_pdf
--output_dir <Workspace>/ssd/eval/stitched_HBOXES512_e4/
--math_dir <Workspace>/ssd/eval/test_HBOXES512_e4/
--stitching_algo equal
--algo_threshold 30
--num_workers 8
--postprocess True
--home_images <Workspace>/images/
math_dir is output dir generated by test.py
output_dir is where you want to generate the final output
python3 <Workspace>/ICDAR2019/TFD-ICDAR2019v2/Evaluation/IOULib/IOUevaluater.py
--ground_truth <Workspace>/ICDAR2019/TFD-ICDAR2019v2/Train/math_gt/
--detections <Workspace>/ssd/eval/stitched_HBOXES512_e4/
Metric | Precision | Recall | F-score |
---|---|---|---|
IOU50 | 85.05 % | 75.85% | 80.19% |
IOU75 | 77.38 % | 69.01% | 72.96% |
GTX 1080: ~27 FPS for 512 * 512 input images
Mali, Parag, et al. “ScanSSD: Scanning Single Shot Detector for Mathematical Formulas in PDF Document Images.” ArXiv:2003.08005 [Cs], Mar. 2020. arXiv.org, http://arxiv.org/abs/2003.08005.
P. S. Mali, "Scanning Single Shot Detector for Math in Document Images." Order No. 22622391, Rochester Institute of Technology, Ann Arbor, 2019.
M. Mahdavi, R. Zanibbi, H. Mouchere, and Utpal Garain (2019). ICDAR 2019 CROHME + TFD: Competition on Recognition of Handwritten Mathematical Expressions and Typeset Formula Detection. Proc. International Conference on Document Analysis and Recognition, Sydney, Australia (to appear).
- Max deGroot for providing open-source SSD code
Proposta de parâmetros para o funcionamento do test
python .\test.py --dataset_root . --trained_model ../pretrained_model/AMATH512_e1GTDB.pth --visual_threshold 0.5 --exp_name test_turing --test_data testing_data_turing --model_type 512 --cfg hboxes512 --padding 3 3 --kernel 1 5 --batch_size 8 --padding 0 2 --stride 1.0
-
Antes é necessário gerar as imagens de cada página do PDF, que servirá como entrada no modelo. Para tal, é possível utilizar o script convert_pdf_to_image.py em https://github.com/MaliParag/TFD-ICDAR2019, que funcionou sem problemas. Basta inserir como diretório de saída, o diretório "images" deste repositório.
-
Observar para os parâmetro --data_root e --test_data, que sugere-se que sejam, respectivamente, o diretório raiz, e um arquivo com o nome do PDF que gerou as imagens, listado por página que será processada, exemplo:
<nome_pdf>/1
<nome_pdf>/2
<nome_pdf>/3
<nome_pdf>/4
-
Após o processamento das páginas, um arquivo
<nome_pdf>.csv
é incluído na pasta.\eval\<exp_name>
, que inclui os bounding box preditos para cada página. Esse arquivo gerado, deve ser utilizado no script.\gtdb\stitch_patches_pdf.py
, o qual ainda não está funcionando. Esse script é utilizado para geração do arquivo .math, além de ajustar os boxes preditos. Entretanto, o arquivo<nome_pdf>.csv
pode ser copiado com a extensão.math
, lembrando de alterar a primeira coluna para número inteiro, apenas retirando as duas casas decimais. -
Com o arquivo
.math
gerado, é possível gerar as imagens de cada página anotada, por meio do scriptvisualize_annotations.py
, também disponibilizado em https://github.com/MaliParag/TFD-ICDAR2019 . Esse script não apresentou problemas. Um exemplo de anotação efetuada com os parâmetros de teste indicados acima, para o artigo https://dl.acm.org/citation.cfm?id=321991 denominado Emden76, está na pastaanotado
.