- https://nervanasystems.github.io/distiller/
- PyTorch impl.
Quantization of ResNet18
- 8 bit, 7 bit, 6 bit, 5 bit
- 4 bit
- Mixed
Loss-Aware Quantization of ResNet18
- 4bit
Loss-Aware Quantization of ResNet18
- 4bit + 8bit
Quantization of ResNet50
- 8bit
- 4bit
- (maybe deeper network won't lose acc due to quant.)
- Mixed
- latest
- base AP 13 %
- 8 bit, 7 bit, 6 bit, 5 bit
- 4 bit quant AP 4 %
- from: https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD
- used model with PyTorch Checkopint https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD#model-architecture
-
modified for quantization purposes
- problems with softmax (?), src/evaluate.py and src/utils.py
# mask = score > 0.05 original
mask = score > 0.02
bboxes, score = bboxes_in[mask, :], score[mask]
if score.size(0) == 0: continue
score_sorted, score_idx_sorted = score.sort(dim=0)
- problems with masking probabilities in tensors (maybe needs full prec. layer)
- if
mask = score > 0.02
, then has some predictions, ifmask = score > 0.05
, then all probabalities are False
SSD.ipynb
- doesnt work
SSD_2.ipynb
- based on https://pytorch.org/hub/nvidia_deeplearningexamples_ssd/ tutorial
- not all used
https://github.com/NervanaSystems/distiller https://nervanasystems.github.io/distiller/ https://github.com/NVIDIA/DeepLearningExamples/tree/master/PyTorch/Detection/SSD https://github.com/amdegroot/ssd.pytorch https://github.com/qfgaohao/pytorch-ssd