A context-aware neural framework for adaptive informative path planning (IPP) problem.
- Install requirements at the bottom.
- Set appropriate parameters in
parameters.py
, includingNUM_META_AGENT
,CUDA_DEVICE
,BATCH_SIZE
(recommand 256 for every 8GB VRAM). - Name your run with
FOLDER_NAME
. - Run
python driver.py
- Set appropriate parameters in
/eval/test_parameters.py
, includingFOLDER_NAME
,NUM_TEST
,TRAJECTORY_SAMPLING
,SAVE_IMG_GAP
, etc. - Run
/eval/test_driver.py
parameters.py
Training parameters.driver.py
Driver of training program, maintain & update the global network.runner.py
Wrapper of the local network.worker.py
Interact with environment and collect episode experience.attention_net.py
Define context-aware attention-based network.env.py
Informative path planning environment.gp_ipp.py
Gaussian Process and metrics calculation./eval
Test files for evaluation, similar to training./classes
Utilities for generating graph, ground truth, etc./model
Trained model.
python>=3.6
numpy>=1.17
ray>=1.15 % Ray should match python version
pytorch>=1.7
scipy
scikit-learn
matplotlib
imageio
shapely
@InProceedings{cao2022catnipp,
title = {Context-Aware Attention-based Network for Informative Path Planning},
author = {Cao, Yuhong and Wang, Yizhuo and Vashisth, Apoorva and Fan, Haolin and Sartoretti, Guillaume},
booktitle = {6th Annual Conference on Robot Learning},
year = {2022}
}
Yuhong Cao
Yizhuo Wang
Apoorva Vashisth
Haolin Fan
Guillaume Sartoretti