Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add preliminary implementations for ufunc methods #2510

Merged
merged 1 commit into from
Oct 12, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
22 changes: 11 additions & 11 deletions mars/dataframe/ufunc/ufunc.py
Original file line number Diff line number Diff line change
Expand Up @@ -15,7 +15,7 @@
from numbers import Number

from ...tensor import tensor as astensor
from ...tensor.ufunc.ufunc import UFUNC_TO_TENSOR_FUNC
from ...tensor.ufunc.ufunc import UFUNC_TO_TENSOR_FUNCS
from ..core import DATAFRAME_TYPE, SERIES_TYPE


Expand All @@ -39,15 +39,15 @@ def _array_ufunc(_, ufunc, method, *inputs, **kwargs):
if not _check_arg(x):
return NotImplemented

if method == '__call__':
if ufunc.signature is not None:
return NotImplemented
if ufunc not in UFUNC_TO_TENSOR_FUNC:
return NotImplemented
if ufunc.signature is not None:
return NotImplemented
if ufunc not in UFUNC_TO_TENSOR_FUNCS:
return NotImplemented

# we delegate numpy ufunc to tensor ufunc,
# tensor ufunc will handle Mars DataFrame properly.
tensor_func = UFUNC_TO_TENSOR_FUNC[ufunc]
# we delegate numpy ufunc to tensor ufunc,
# tensor ufunc will handle Mars DataFrame properly.
try:
tensor_func = getattr(UFUNC_TO_TENSOR_FUNCS[ufunc], method)
return tensor_func(*inputs, **kwargs)

return NotImplemented
except (AttributeError, NotImplementedError):
return NotImplemented
14 changes: 14 additions & 0 deletions mars/tensor/ufunc/tests/__init__.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
# -*- coding: utf-8 -*-
# Copyright 1999-2021 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
82 changes: 82 additions & 0 deletions mars/tensor/ufunc/tests/test_ufunc_execution.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,82 @@
# -*- coding: utf-8 -*-
# Copyright 1999-2021 Alibaba Group Holding Ltd.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import pytest

from .... import tensor as mt
from ...core import Tensor


@pytest.mark.parametrize('ufunc_name', ['negative'])
def test_unary_ufunc(setup, ufunc_name):
raw_data = np.random.rand(100, 100)
t = mt.tensor(raw_data.copy(), chunk_size=20)

ufunc_obj = getattr(np, ufunc_name)

res = ufunc_obj(t)
expected = ufunc_obj(raw_data)
assert isinstance(res, Tensor)
np.testing.assert_array_equal(res.execute().fetch(), expected)

ufunc_obj.at(t, 3)
ufunc_obj.at(raw_data, 3)
np.testing.assert_array_equal(t.execute().fetch(), raw_data)


@pytest.mark.parametrize('ufunc_name',
['add', 'multiply', 'logaddexp', 'logaddexp2'])
def test_binary_ufunc(setup, ufunc_name):
raw_data1 = np.random.rand(100, 100)
t1 = mt.tensor(raw_data1.copy(), chunk_size=50)
raw_data2 = np.random.rand(100, 100)
t2 = mt.tensor(raw_data2.copy(), chunk_size=50)

ufunc_obj = getattr(np, ufunc_name)

res = ufunc_obj(t1, t2)
expected = ufunc_obj(raw_data1, raw_data2)
assert isinstance(res, Tensor)
np.testing.assert_array_equal(res.execute().fetch(), expected)

ufunc_obj.at(t1, (3, 4), 2)
ufunc_obj.at(raw_data1, (3, 4), 2)
np.testing.assert_array_equal(t1.execute().fetch(), raw_data1)

res = ufunc_obj.reduce(t1, axis=1)
expected = ufunc_obj.reduce(raw_data1, axis=1)
assert isinstance(res, Tensor)
np.testing.assert_almost_equal(res.execute().fetch(), expected)

res = t1.copy()
ufunc_obj.reduce(t1, axis=1, out=res)
expected = ufunc_obj.reduce(raw_data1, axis=1)
assert isinstance(res, Tensor)
np.testing.assert_almost_equal(res.execute().fetch(), expected)

res = ufunc_obj.accumulate(t1, axis=1)
expected = ufunc_obj.accumulate(raw_data1, axis=1)
assert isinstance(res, Tensor)
np.testing.assert_almost_equal(res.execute().fetch(), expected)

res = t1.copy()
ufunc_obj.accumulate(t1, axis=1, out=res)
expected = ufunc_obj.accumulate(raw_data1, axis=1)
assert isinstance(res, Tensor)
np.testing.assert_almost_equal(res.execute().fetch(), expected)

with pytest.raises(TypeError):
ufunc_obj.reduceat(t1, [(3, 4)])
239 changes: 150 additions & 89 deletions mars/tensor/ufunc/ufunc.py
Original file line number Diff line number Diff line change
Expand Up @@ -19,92 +19,153 @@
import numpy as np

from ..datasource import tensor as astensor
from .. import arithmetic as arith


UFUNC_TO_TENSOR_FUNC = {
# binary
np.add: arith.add,
np.subtract: arith.subtract,
np.multiply: arith.multiply,
np.divide: arith.divide,
np.logaddexp: arith.logaddexp,
np.logaddexp2: arith.logaddexp2,
np.true_divide: arith.truediv,
np.floor_divide: arith.floordiv,
from .. import arithmetic as arith, reduction


class TensorUfuncDef:
def __init__(self, method, aggregator=None, accumulator=None,
pre_agg=None, post_agg=None):
self._method = method
self._aggregator = aggregator
self._accumulator = accumulator
self._pre_agg = pre_agg
self._post_agg = post_agg

def __call__(self, *args, **kwargs):
return self._method(*args, **kwargs)

def at(self, a, indices, b=None):
# todo handle setting duplicated keys, a separate operand may be needed
if b is None:
a[indices] = self(a[indices])
else:
a[indices] = self(a[indices], b)

def accumulate(self, array, axis=0, dtype=None, out=None):
if self._accumulator is None:
raise NotImplementedError
data = array if self._pre_agg is None else self._pre_agg(array)
result = self._accumulator(data, axis=axis, dtype=dtype)
result = result if self._post_agg is None else self._post_agg(result)
if out is not None:
out[0]._data = result._data
else:
return result

def reduce(self, array, axis=0, dtype=None, out=None, keepdims=False):
if self._aggregator is None:
raise NotImplementedError
data = array if self._pre_agg is None else self._pre_agg(array)
result = self._aggregator(data, axis=axis, dtype=dtype, keepdims=keepdims)
result = result if self._post_agg is None else self._post_agg(result)
if out is not None:
out[0]._data = result._data
else:
return result


UFUNC_TO_TENSOR_FUNCS = {
np.add: TensorUfuncDef(
arith.add,
accumulator=reduction.cumsum,
aggregator=reduction.sum,
),
np.subtract: TensorUfuncDef(arith.subtract),
np.multiply: TensorUfuncDef(
arith.multiply,
accumulator=reduction.cumprod,
aggregator=reduction.prod,
),
np.divide: TensorUfuncDef(arith.divide),
np.logaddexp: TensorUfuncDef(
arith.logaddexp,
accumulator=reduction.cumsum,
aggregator=reduction.sum,
pre_agg=arith.exp,
post_agg=arith.log,
),
np.logaddexp2: TensorUfuncDef(
arith.logaddexp2,
accumulator=reduction.cumsum,
aggregator=reduction.sum,
pre_agg=lambda x: arith.power(2, x),
post_agg=arith.log2,
),
np.true_divide: TensorUfuncDef(arith.truediv),
np.floor_divide: TensorUfuncDef(arith.floordiv),
# unary
np.negative: arith.negative,
np.power: arith.power,
np.float_power: arith.float_power,
np.remainder: arith.remainder,
np.mod: arith.mod,
np.fmod: arith.fmod,
np.conj: arith.conj,
np.conjugate: arith.conjugate,
np.exp: arith.exp,
np.exp2: arith.exp2,
np.log: arith.log,
np.log2: arith.log2,
np.log10: arith.log10,
np.log1p: arith.log1p,
np.expm1: arith.expm1,
np.sqrt: arith.sqrt,
np.square: arith.square,
np.cbrt: arith.cbrt,
np.reciprocal: arith.reciprocal,
np.negative: TensorUfuncDef(arith.negative),
np.power: TensorUfuncDef(arith.power),
np.float_power: TensorUfuncDef(arith.float_power),
np.remainder: TensorUfuncDef(arith.remainder),
np.mod: TensorUfuncDef(arith.mod),
np.fmod: TensorUfuncDef(arith.fmod),
np.conj: TensorUfuncDef(arith.conj),
np.conjugate: TensorUfuncDef(arith.conjugate),
np.exp: TensorUfuncDef(arith.exp),
np.exp2: TensorUfuncDef(arith.exp2),
np.log: TensorUfuncDef(arith.log),
np.log2: TensorUfuncDef(arith.log2),
np.log10: TensorUfuncDef(arith.log10),
np.log1p: TensorUfuncDef(arith.log1p),
np.expm1: TensorUfuncDef(arith.expm1),
np.sqrt: TensorUfuncDef(arith.sqrt),
np.square: TensorUfuncDef(arith.square),
np.cbrt: TensorUfuncDef(arith.cbrt),
np.reciprocal: TensorUfuncDef(arith.reciprocal),
# trigonometric functions
np.sin: arith.sin,
np.cos: arith.cos,
np.tan: arith.tan,
np.arcsin: arith.arcsin,
np.arccos: arith.arccos,
np.arctan: arith.arctan,
np.arctan2: arith.arctan2,
np.hypot: arith.hypot,
np.sinh: arith.sinh,
np.cosh: arith.cosh,
np.tanh: arith.tanh,
np.arcsinh: arith.arcsinh,
np.arccosh: arith.arccosh,
np.arctanh: arith.arctanh,
np.deg2rad: arith.deg2rad,
np.rad2deg: arith.rad2deg,
np.sin: TensorUfuncDef(arith.sin),
np.cos: TensorUfuncDef(arith.cos),
np.tan: TensorUfuncDef(arith.tan),
np.arcsin: TensorUfuncDef(arith.arcsin),
np.arccos: TensorUfuncDef(arith.arccos),
np.arctan: TensorUfuncDef(arith.arctan),
np.arctan2: TensorUfuncDef(arith.arctan2),
np.hypot: TensorUfuncDef(arith.hypot),
np.sinh: TensorUfuncDef(arith.sinh),
np.cosh: TensorUfuncDef(arith.cosh),
np.tanh: TensorUfuncDef(arith.tanh),
np.arcsinh: TensorUfuncDef(arith.arcsinh),
np.arccosh: TensorUfuncDef(arith.arccosh),
np.arctanh: TensorUfuncDef(arith.arctanh),
np.deg2rad: TensorUfuncDef(arith.deg2rad),
np.rad2deg: TensorUfuncDef(arith.rad2deg),
# comparison functions
np.greater: arith.greater,
np.greater_equal: arith.greater_equal,
np.less: arith.less,
np.less_equal: arith.less_equal,
np.not_equal: arith.not_equal,
np.equal: arith.equal,
np.logical_and: arith.logical_and,
np.logical_or: arith.logical_or,
np.logical_xor: arith.logical_xor,
np.logical_not: arith.logical_not,
np.maximum: arith.maximum,
np.minimum: arith.minimum,
np.fmax: arith.fmax,
np.fmin: arith.fmin,
np.greater: TensorUfuncDef(arith.greater),
np.greater_equal: TensorUfuncDef(arith.greater_equal),
np.less: TensorUfuncDef(arith.less),
np.less_equal: TensorUfuncDef(arith.less_equal),
np.not_equal: TensorUfuncDef(arith.not_equal),
np.equal: TensorUfuncDef(arith.equal),
np.logical_and: TensorUfuncDef(arith.logical_and),
np.logical_or: TensorUfuncDef(arith.logical_or),
np.logical_xor: TensorUfuncDef(arith.logical_xor),
np.logical_not: TensorUfuncDef(arith.logical_not),
np.maximum: TensorUfuncDef(arith.maximum),
np.minimum: TensorUfuncDef(arith.minimum),
np.fmax: TensorUfuncDef(arith.fmax),
np.fmin: TensorUfuncDef(arith.fmin),
# floating functions
np.isfinite: arith.isfinite,
np.isinf: arith.isinf,
np.isnan: arith.isnan,
np.signbit: arith.signbit,
np.copysign: arith.copysign,
np.nextafter: arith.nextafter,
np.spacing: arith.spacing,
np.modf: arith.modf,
np.ldexp: arith.ldexp,
np.frexp: arith.frexp,
np.floor: arith.floor,
np.ceil: arith.ceil,
np.trunc: arith.trunc,
np.isfinite: TensorUfuncDef(arith.isfinite),
np.isinf: TensorUfuncDef(arith.isinf),
np.isnan: TensorUfuncDef(arith.isnan),
np.signbit: TensorUfuncDef(arith.signbit),
np.copysign: TensorUfuncDef(arith.copysign),
np.nextafter: TensorUfuncDef(arith.nextafter),
np.spacing: TensorUfuncDef(arith.spacing),
np.modf: TensorUfuncDef(arith.modf),
np.ldexp: TensorUfuncDef(arith.ldexp),
np.frexp: TensorUfuncDef(arith.frexp),
np.floor: TensorUfuncDef(arith.floor),
np.ceil: TensorUfuncDef(arith.ceil),
np.trunc: TensorUfuncDef(arith.trunc),
# more math functions
np.degrees: arith.degrees,
np.radians: arith.radians,
np.rint: arith.rint,
np.fabs: arith.fabs,
np.sign: arith.sign,
np.absolute: arith.absolute,
np.degrees: TensorUfuncDef(arith.degrees),
np.radians: TensorUfuncDef(arith.radians),
np.rint: TensorUfuncDef(arith.rint),
np.fabs: TensorUfuncDef(arith.fabs),
np.sign: TensorUfuncDef(arith.sign),
np.absolute: TensorUfuncDef(arith.absolute),
}


Expand All @@ -125,13 +186,13 @@ def _array_ufunc(_, ufunc, method, *inputs, **kwargs):
if not _check_arg(x):
return NotImplemented

if method == '__call__':
if ufunc.signature is not None:
return NotImplemented
if ufunc not in UFUNC_TO_TENSOR_FUNC:
return NotImplemented
if ufunc.signature is not None:
return NotImplemented
if ufunc not in UFUNC_TO_TENSOR_FUNCS:
return NotImplemented

tensor_func = UFUNC_TO_TENSOR_FUNC[ufunc]
try:
tensor_func = getattr(UFUNC_TO_TENSOR_FUNCS[ufunc], method)
return tensor_func(*inputs, **kwargs)

return NotImplemented
except (AttributeError, NotImplementedError):
return NotImplemented