Skip to content

Commit

Permalink
Restart adding definitions
Browse files Browse the repository at this point in the history
  • Loading branch information
ayberkt committed Oct 25, 2024
1 parent dfabe19 commit d34a0e5
Showing 1 changed file with 294 additions and 35 deletions.
329 changes: 294 additions & 35 deletions source/Locales/PatchJournalIndex.lagda
Original file line number Diff line number Diff line change
Expand Up @@ -18,105 +18,364 @@ open import UF.KrausLemma
open import UF.Univalence
open import UF.Subsingletons

open split-support-and-collapsibility pt

open Locale

\end{code}

𝓥-small type.
\section{Introduction}

\section{Foundations}

\begin{code}

definition-1 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-1 = _is_small

\end{code}

\begin{code}

lemma-2 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-2 = _is_small

\end{code}

\begin{code}

definition-3 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-3 = _is_small

\end{code}

\begin{code}

definition-4 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-4 = _is_small

\end{code}

\begin{code}

definition-5 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-5 = _is_small

\end{code}

\section{Locales}

\begin{code}

definition-7 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-7 = _is_small

\end{code}

\begin{code}

definition-8 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-8 = _is_small

\end{code}

\begin{code}

definition-9 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-9 = _is_small

\end{code}

\begin{code}

definition-10 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-10 = _is_small

\end{code}

\begin{code}

definition-11 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-11 = _is_small

\end{code}

\begin{code}

lemma-12 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-12 = _is_small

\end{code}

\begin{code}

definition-14 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-14 = _is_small

\end{code}

\begin{code}

definition-15 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-15 = _is_small

\end{code}

\begin{code}

definition-16 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-16 = _is_small

\end{code}

\begin{code}

remark-17 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
remark-17 = _is_small

\end{code}

\begin{code}

lemma-18 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-18 = _is_small

\end{code}

\section{Spectral and Stone Locales}

\begin{code}

definition-19 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-19 = _is_small

\end{code}

\begin{code}

lemma-20 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-20 = _is_small

\end{code}

\begin{code}

definition-21 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-21 = _is_small

\end{code}

\subsection{Spectral locales}

\begin{code}

definition-22 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-22 = _is_small

\end{code}

\begin{code}

definition-23 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-23 = _is_small

\end{code}

\begin{code}

lemma-24 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-24 = _is_small

\end{code}

\begin{code}

definition-25 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-25 = _is_small

\end{code}

\begin{code}

lemma-26 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-26 = _is_small

\end{code}

\begin{code}

definition-27 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-27 = _is_small

\end{code}

\begin{code}

lemma-28 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-28 = _is_small

\end{code}

\begin{code}

corollary-29 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
corollary-29 = _is_small

\end{code}

\begin{code}

lemma-30 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-30 = _is_small

\end{code}

\begin{code}

definition-1 : (𝓥 : Universe) → 𝓤 ̇ → 𝓤 ⊔ 𝓥 ⁺ ̇
definition-1 𝓥 A = A is 𝓥 small
lemma-31 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-31 = _is_small

\end{code}

Being small is a proposition.
\begin{code}

definition-32 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-32 = _is_small

\end{code}

\begin{code}

proposition-2 : (ua : Univalence) (X : 𝓤 ̇) (𝓥 : Universe)
→ is-prop (X is 𝓥 small)
proposition-2 = being-small-is-prop
lemma-33 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-33 = _is_small

\end{code}

\begin{code}

definition-3 : (𝓤 𝓥 : Universe)(𝓤 ⊔ 𝓥) ⁺ ̇
definition-3 𝓤 𝓥 = propositional-resizing 𝓤 𝓥
lemma-34 : {𝓤 : Universe}𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-34 = _is_small

\end{code}

\begin{code}

definition-3-global : 𝓤ω
definition-3-global = Propositional-Resizing
the-theorem-from-§4∙1 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
the-theorem-from-§4∙1 = _is_small

\end{code}

\begin{code}

open import Slice.Family
example-35 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
example-35 = _is_small

\end{code}

\begin{code}

definition-4 : (𝓦 : Universe) → 𝓤 ̇ → 𝓤 ⊔ 𝓦 ⁺ ̇
definition-4 = Fam
lemma-36 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-36 = _is_small

\end{code}

\begin{code}

defn∶embedding : {X : 𝓤 ̇} {Y : 𝓥 ̇} → (X → Y) → 𝓤 ⊔ 𝓥 ̇
defn∶embedding = is-embedding
proposition-37 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
proposition-37 = _is_small

\end{code}

\subsection{Stone locales}

\begin{code}

defn∶nucleus : Frame 𝓤 𝓥 𝓦 → 𝓤 ⊔ 𝓥 ̇
defn∶nucleus = Nucleus
definition-38 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-38 = _is_small

\end{code}

Definition of the way below relation.
\begin{code}

definition-39 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-39 = _is_small

\end{code}

\begin{code}

open import Locales.WayBelowRelation.Definition pt fe
lemma-40 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-40 = _is_small

\end{code}

\begin{code}

defn∶way-below : (X : Locale 𝓤 𝓥 𝓦) → ⟨ 𝒪 X ⟩ → ⟨ 𝒪 X ⟩ → Ω (𝓤 ⊔ 𝓥 ⊔ 𝓦 ⁺)
defn∶way-below X = way-below (𝒪 X)
definition-41 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-41 = _is_small

\end{code}

Definition of compactness.
\begin{code}

lemma-42 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-42 = _is_small

\end{code}

\begin{code}

open import Locales.Compactness pt fe
lemma-43 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-43 = _is_small

\end{code}

\begin{code}

defn∶compact-locale : Locale 𝓤 𝓥 𝓦Ω (𝓤 ⊔ 𝓥 ⊔ 𝓦 ⁺)
defn∶compact-locale = is-compact
lemma-44 : {𝓤 : Universe}𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-44 = _is_small

\end{code}

Definition of spectral locale.
\begin{code}

corollary-45 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
corollary-45 = _is_small

\end{code}

\begin{code}

open import Locales.Spectrality.SpectralLocale pt fe
corollary-46 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
corollary-46 = _is_small

defn∶spectral-locale : Locale 𝓤 𝓥 𝓦 → Ω (𝓤 ⊔ 𝓥 ⊔ 𝓦 ⁺)
defn∶spectral-locale = is-spectral
\end{code}

\begin{code}

definition-47 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
definition-47 = _is_small

\end{code}

\begin{code}

lemma-48 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-48 = _is_small

\end{code}

\begin{code}

lemma-29 : (X : Locale (𝓤 ⁺) 𝓤 𝓤)
→ {!!}
lemma-29 = {!!}
lemma-49 : {𝓤 : Universe} → 𝓤 ̇ → (𝓥 : Universe) → (𝓥 ⁺) ⊔ 𝓤 ̇
lemma-49 = _is_small

\end{code}

\section{Posetal Adjoint Functor Theorem}

\section{Meet-semilattice of Scott continuous nuclei}

\section{Joins in the frame of Scott continuous nuclei}

\section{The coreflection property of Patch}

\section{Summary and discussion}

0 comments on commit d34a0e5

Please sign in to comment.