- Mixing Speed
- Mixing Quality
- Results
- Mixers: FNV1A_Pippip, aes2, aes3, crc_mul, ettinger_mixer1, ettinger_mixer2, fnv1a_64, lemire_stronglyuniversal, mum3_mixer, mumxmumxx1, mumxmumxx2, mumxmumxx3, murmurhash3_fmix64, robin_hood_hash_int, rrmxmx, rrxmrrxmsx_0, staffort_mix13, twang_mix64, wyhash3_mix, xxh3_mixer
Testing framework for the quest to find a fast & strong mixer, e. g. for hashtables. Many modern hashtables like robin_hood::unordered_map or Abseil's hash tables require high quality hashing for their tables to work efficiently.
Generated with nanobench, g++ 9.2, -O3 -march=native
, on an Intel i7-8700 CPU locked to 3.20GHz
ns/op | op/s | err% | ins/op | cyc/op | IPC | bra/op | miss% | total | benchmark |
---|---|---|---|---|---|---|---|---|---|
1.25 | 799,436,335.34 | 0.0% | 3.00 | 4.00 | 0.751 | 0.00 | 0.0% | 0.00 | FNV1A_Pippip |
4.07 | 245,934,865.72 | 0.0% | 4.00 | 12.99 | 0.308 | 0.00 | 0.0% | 0.00 | aes2 |
5.32 | 188,075,153.37 | 0.0% | 5.00 | 16.98 | 0.295 | 0.00 | 0.0% | 0.00 | aes3 |
1.88 | 532,956,443.53 | 0.0% | 5.00 | 5.99 | 0.835 | 0.00 | 0.0% | 0.00 | crc_mul |
4.14 | 241,447,855.03 | 0.0% | 15.00 | 13.23 | 1.134 | 0.00 | 0.0% | 0.00 | ettinger_mixer1 |
5.17 | 193,519,486.34 | 0.0% | 21.00 | 16.50 | 1.273 | 0.00 | 0.0% | 0.00 | ettinger_mixer2 |
10.63 | 94,049,146.35 | 0.0% | 38.01 | 33.95 | 1.119 | 0.00 | 0.0% | 0.00 | fnv1a_64 |
3.15 | 317,831,100.56 | 0.3% | 18.00 | 10.06 | 1.790 | 0.00 | 0.0% | 0.00 | lemire_stronglyuniversal |
3.44 | 290,636,264.57 | 0.0% | 9.00 | 10.99 | 0.819 | 0.00 | 0.0% | 0.00 | mum3_mixer |
3.13 | 319,642,931.98 | 0.0% | 9.00 | 9.99 | 0.901 | 0.00 | 0.0% | 0.00 | mumxmumxx1 |
3.44 | 290,583,035.87 | 0.0% | 11.00 | 10.99 | 1.001 | 0.00 | 0.0% | 0.00 | mumxmumxx2 |
3.13 | 319,760,942.47 | 0.0% | 8.00 | 9.99 | 0.801 | 0.00 | 0.0% | 0.00 | mumxmumxx3 |
3.76 | 266,269,957.68 | 0.0% | 13.00 | 11.99 | 1.084 | 0.00 | 0.0% | 0.00 | murmurhash3_fmix64 |
1.56 | 639,449,772.84 | 0.0% | 4.00 | 5.00 | 0.801 | 0.00 | 0.0% | 0.00 | robin_hood_hash_int |
4.16 | 240,133,099.18 | 0.1% | 13.00 | 13.30 | 0.977 | 0.00 | 0.0% | 0.00 | rrmxmx |
4.51 | 221,797,240.96 | 0.1% | 15.00 | 14.39 | 1.042 | 0.00 | 0.0% | 0.00 | rrxmrrxmsx_0 |
3.76 | 266,285,145.56 | 0.0% | 13.00 | 12.00 | 1.084 | 0.00 | 0.0% | 0.00 | staffort_mix13 |
5.32 | 187,920,592.19 | 0.0% | 19.00 | 17.00 | 1.118 | 0.00 | 0.0% | 0.00 | twang_mix64 |
3.83 | 260,771,165.13 | 0.0% | 14.00 | 12.25 | 1.143 | 0.00 | 0.0% | 0.00 | wyhash3_mix |
5.95 | 167,926,373.82 | 0.0% | 21.00 | 19.02 | 1.104 | 0.00 | 0.0% | 0.00 | xxh3_mixer |
The testing protocol is taken from by Pelle Evensen's blog post Better, stronger mixer and a test procedure:
Successive increasing numbers, which are rotated right, then optionally bitorder is reversed, are fed into a mixer. The mixer's output is fed into PractRand, which analyzes the quality of the generated number. So basically, the algorithm is this:
// e.g. for rotation 37, and enabled bitreverse:
int rotation = 37;
uint64_t ctr = 0;
while (true) {
feedPractRand(mixer(bitreverse64(rotr(ctr, rotation))));
++ctr;
}
In my tests, I run PractRand 0.95 with the arguments RNG_test stdin64 -tf 2 -tlmin 10 -tlmax 40
. The test aborts when it detects a failure in the quality of the mixer results.
Ideally, a mixer doesn't fail the practrand test and is as fast as possible. In the following plot I show the results of the mixers that I have already evaluated. Pareto optimums are green (I consider 2^10 still a failure).
An ideal mixer should be in the upper right corner. The pareto front is colored green (except anything that already fails on tlmax=10. I consider these mixers as too bad for practical use).
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
16 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
32 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
48 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
min: 2^10, max: 2^10, mean: 2^10.0
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
16 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
32 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
48 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 15 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 13 | 13 | 14 | 14 | 14 | 14 | 15 |
16 | 15 | 15 | 15 | 14 | 14 | 14 | 15 | 15 | 15 | 14 | 14 | 14 | 14 | 14 | 15 | 15 |
32 | 15 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 14 | 14 | 14 | 14 | 14 | 14 | 15 |
48 | 15 | 14 | 14 | 14 | 14 | 14 | 15 | 15 | 15 | 14 | 14 | 14 | 14 | 14 | 15 | 15 |
min: 2^13, max: 2^16, mean: 2^14.7
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 14 | 14 | 13 | 14 | 15 | 15 | 15 |
16 | 15 | 14 | 14 | 14 | 14 | 14 | 15 | 15 | 15 | 15 | 13 | 14 | 14 | 14 | 14 | 15 |
32 | 15 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 14 | 14 | 13 | 14 | 14 | 15 | 15 |
48 | 15 | 14 | 14 | 14 | 14 | 14 | 15 | 15 | 15 | 14 | 13 | 14 | 14 | 14 | 15 | 15 |
min: 2^13, max: 2^16, mean: 2^14.7
TODO only tested up to -tlmax 20
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | 19 | >20 | >20 | >20 | >20 | >20 |
16 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
32 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | 19 | >20 | >20 | >20 | >20 | >20 |
48 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
min: 2^19, max: 2^20, mean: 2^20.0
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | 19 | >20 | >20 | >20 | >20 | >20 |
16 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
32 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | 19 | >20 | >20 | >20 | >20 | >20 |
48 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 | >20 |
min: 2^19, max: 2^20, mean: 2^20.0
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 13 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
16 | 13 | 13 | 14 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
32 | 13 | 13 | 13 | 13 | 13 | 14 | 13 | 14 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
48 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
min: 2^13, max: 2^14, mean: 2^13.1
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
16 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 13 | 13 | 13 | 13 | 13 |
32 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 14 | 14 | 14 | 14 |
48 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
min: 2^13, max: 2^14, mean: 2^13.1
TODO
TODO
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 12 | 12 | 12 | 12 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
16 | 10 | 10 | 10 | 10 | 10 | 11 | 10 | 10 | 10 | 10 | 10 | 10 | 11 | 13 | 13 | 10 |
32 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | 13 | 13 | 12 | 13 | 12 | 13 |
48 | 13 | 12 | 13 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 12 | 13 | 13 | 13 | 13 |
min: 2^10, max: 2^13, mean: 2^11.6
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 10 | 10 | 10 | 10 | 11 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 14 | 13 | 13 | 13 |
16 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 13 | 14 | 12 | 13 | 13 | 13 | 13 |
32 | 13 | 13 | 13 | 12 | 13 | 13 | 13 | 13 | 10 | 13 | 10 | 10 | 10 | 10 | 10 | 10 |
48 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 | 10 |
min: 2^10, max: 2^14, mean: 2^11.5
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 12 | 13 | 13 | 10 | 12 | 12 | 13 |
16 | 13 | 12 | 13 | 10 | 12 | 13 | 12 | 12 | 12 | 12 | 13 | 12 | 12 | 13 | 13 | 12 |
32 | 12 | 12 | 12 | 12 | 12 | 13 | 13 | 13 | 12 | 12 | 12 | 13 | 12 | 13 | 13 | 13 |
48 | 13 | 12 | 13 | 12 | 12 | 13 | 13 | 12 | 13 | 12 | 13 | 12 | 10 | 12 | 10 | 11 |
min: 2^10, max: 2^13, mean: 2^12.2
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 13 | 14 | 14 | 12 | 13 | 12 | 12 | 12 | 12 | 10 | 12 | 10 | 14 | 13 | 13 | 13 |
16 | 13 | 13 | 13 | 13 | 14 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 |
32 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 13 | 13 | 12 | 12 | 13 | 13 | 12 | 13 |
48 | 13 | 13 | 13 | 13 | 12 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | 13 | 13 |
min: 2^10, max: 2^14, mean: 2^12.8
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 16 | 17 | 17 | 17 | 17 | 17 | 17 | 16 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 |
16 | 17 | 17 | 17 | 17 | 16 | 16 | 16 | 17 | 17 | 17 | 16 | 17 | 16 | 17 | 17 | 17 |
32 | 17 | 16 | 17 | 17 | 16 | 17 | 17 | 16 | 17 | 17 | 16 | 16 | 16 | 17 | 17 | 17 |
48 | 16 | 16 | 16 | 17 | 17 | 17 | 17 | 17 | 17 | 16 | 17 | 17 | 16 | 16 | 16 | 17 |
min: 2^16, max: 2^17, mean: 2^16.7
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 17 | 17 | 16 | 16 | 17 | 17 | 17 | 17 | 16 | 17 | 16 | 17 | 16 | 16 | 17 | 17 |
16 | 17 | 16 | 17 | 17 | 17 | 17 | 16 | 16 | 16 | 17 | 17 | 16 | 16 | 16 | 16 | 16 |
32 | 16 | 16 | 17 | 16 | 17 | 16 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 16 | 16 |
48 | 16 | 16 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 17 | 16 | 17 | 17 | 17 | 17 | 17 |
min: 2^16, max: 2^17, mean: 2^16.6
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 38 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
16 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | 32 | 33 | 31 |
32 | 34 | >40 | >40 | 38 | >40 | >40 | >40 | 37 | 34 | 36 | 38 | 36 | 36 | 33 | 39 | 30 |
48 | 32 | 30 | 30 | 30 | 33 | 34 | 32 | 31 | 38 | 37 | 36 | 37 | 36 | 32 | 32 | 37 |
min: 2^30, max: 2^40, mean: 2^37.2
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 36 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
16 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | 34 |
32 | 35 | >40 | 33 | 34 | >40 | 38 | 38 | >40 | 40 | 39 | 38 | 36 | >40 | 38 | 28 | >40 |
48 | 31 | 31 | 32 | 29 | 30 | 31 | 31 | 32 | 34 | 33 | 33 | 31 | 33 | 34 | 36 | 38 |
min: 2^28, max: 2^40, mean: 2^37.3
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
16 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
32 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
48 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
min: 2^40, max: 2^40, mean: 2^40.0
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
16 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
32 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
48 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
min: 2^40, max: 2^40, mean: 2^40.0
TODO
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 17 | 18 | 18 | 17 | 17 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 15 | 15 | 15 | 14 |
16 | 14 | 14 | 14 | 14 | 14 | 15 | 15 | 15 | 16 | 15 | 15 | 16 | 16 | 16 | 15 | 15 |
32 | 16 | 17 | 17 | 17 | 16 | 15 | 14 | 14 | 15 | 15 | 14 | 15 | 15 | 15 | 15 | 15 |
48 | 14 | 14 | 14 | 14 | 14 | 14 | 15 | 15 | 15 | 16 | 15 | 16 | 17 | 17 | 17 | 17 |
min: 2^14, max: 2^18, mean: 2^15.4
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 15 | 16 | 17 | 18 | 18 | 18 | 19 | 19 | 18 | 17 | 17 | 17 | 17 | 16 | 17 | 17 |
16 | 17 | 16 | 14 | 14 | 14 | 14 | 14 | 16 | 17 | 17 | 17 | 17 | 18 | 18 | 17 | 15 |
32 | 15 | 14 | 14 | 16 | 16 | 17 | 18 | 18 | 18 | 18 | 17 | 17 | 17 | 17 | 17 | 17 |
48 | 17 | 16 | 15 | 15 | 14 | 14 | 14 | 15 | 16 | 17 | 17 | 17 | 17 | 18 | 18 | 17 |
min: 2^14, max: 2^19, mean: 2^16.5
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 12 | 13 | 13 | 13 | 12 | 13 | 13 | 13 | 12 | 12 | 12 | 12 | 12 | 12 | 12 | 13 |
16 | 13 | 12 | 10 | 13 | 12 | 10 | 12 | 12 | 12 | 12 | 12 | 13 | 10 | 12 | 12 | 13 |
32 | 12 | 10 | 13 | 13 | 12 | 13 | 13 | 13 | 12 | 13 | 12 | 12 | 12 | 12 | 12 | 13 |
48 | 13 | 12 | 10 | 13 | 12 | 10 | 12 | 12 | 12 | 12 | 12 | 13 | 10 | 12 | 12 | 13 |
min: 2^10, max: 2^13, mean: 2^12.1
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 12 | 13 | 13 | 13 | 12 | 12 | 13 | 13 |
16 | 13 | 13 | 13 | 13 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 14 | 14 |
32 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 12 | 13 | 13 | 13 | 12 | 12 | 13 | 13 |
48 | 13 | 13 | 13 | 13 | 12 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 13 | 15 | 13 | 13 |
min: 2^12, max: 2^15, mean: 2^13.0
TODO
TODO
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 19 | 17 | 18 | 18 | 18 | 17 | 18 | 18 | 18 | 18 | 18 | 19 | 19 | 16 | 17 | 17 |
16 | 17 | 17 | 16 | 17 | 16 | 16 | 17 | 17 | 16 | 17 | 16 | 17 | 17 | 17 | 18 | 18 |
32 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 19 | 20 | 20 | 19 | 20 | 19 | 19 |
48 | 17 | 17 | 16 | 17 | 17 | 17 | 16 | 17 | 16 | 17 | 17 | 17 | 18 | 18 | 19 | 19 |
min: 2^16, max: 2^20, mean: 2^17.8
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 16 | 18 | 18 | 18 | 18 | 18 | 18 | 18 | 19 | 21 | 20 | 22 | 19 | 21 | 18 | 18 |
16 | 21 | 19 | 20 | 20 | 20 | 20 | 19 | 20 | 20 | 19 | 20 | 20 | 19 | 19 | 18 | 18 |
32 | 18 | 19 | 22 | 22 | 20 | 21 | 22 | 21 | 20 | 22 | 19 | 21 | 19 | 18 | 21 | 19 |
48 | 20 | 19 | 20 | 20 | 19 | 20 | 20 | 19 | 20 | 20 | 19 | 19 | 18 | 18 | 18 | 17 |
min: 2^16, max: 2^22, mean: 2^19.4
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 13 | 15 | 15 | 16 | 16 | 16 | 17 | 15 | 15 | 15 | 14 | 14 | 14 | 13 | 13 | 13 |
16 | 15 | 15 | 15 | 16 | 15 | 16 | 15 | 16 | 17 | 18 | 18 | 16 | 18 | 18 | 19 | 19 |
32 | 20 | 19 | 19 | 19 | 19 | 18 | 20 | 20 | 20 | 19 | 19 | 18 | 20 | 20 | 21 | 21 |
48 | 21 | 21 | 16 | 17 | 17 | 16 | 15 | 15 | 15 | 15 | 14 | 14 | 14 | 13 | 13 | 13 |
min: 2^13, max: 2^21, mean: 2^16.6
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 14 | 16 | 16 | 16 | 16 | 16 | 16 | 17 | 15 | 16 | 13 | 13 | 13 | 14 | 14 | 14 |
16 | 14 | 14 | 15 | 16 | 16 | 16 | 16 | 17 | 18 | 18 | 19 | 20 | 18 | 18 | 19 | 18 |
32 | 19 | 21 | 18 | 20 | 21 | 21 | 22 | 22 | 22 | 21 | 18 | 19 | 18 | 17 | 19 | 17 |
48 | 17 | 16 | 16 | 16 | 15 | 16 | 15 | 15 | 15 | 16 | 16 | 15 | 16 | 15 | 15 | 13 |
min: 2^13, max: 2^22, mean: 2^16.8
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
16 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
32 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
48 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
min: 2^40, max: 2^40, mean: 2^40.0
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
16 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
32 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
48 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 | >40 |
min: 2^40, max: 2^40, mean: 2^40.0
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 21 | 19 | 16 | 18 | 18 | 20 | 24 | 25 | 26 | 27 | 26 | 27 | 28 | 28 | 26 | 26 |
16 | 23 | 25 | 26 | 25 | 26 | 29 | 29 | 28 | 27 | 25 | 26 | 24 | 22 | 21 | 22 | 23 |
32 | 19 | 19 | 22 | 21 | 21 | 22 | 21 | 18 | 19 | 19 | 20 | 19 | 18 | 18 | 18 | 18 |
48 | 18 | 19 | 16 | 15 | 17 | 19 | 18 | 18 | 19 | 18 | 18 | 18 | 19 | 21 | 21 | 20 |
min: 2^15, max: 2^29, mean: 2^21.6
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 18 | 18 | 22 | 24 | 24 | 26 | 25 | 24 | 22 | 20 | 20 | 18 | 17 | 17 | 17 | 18 |
16 | 17 | 18 | 15 | 15 | 18 | 18 | 18 | 18 | 18 | 19 | 18 | 19 | 22 | 21 | 18 | 20 |
32 | 23 | 18 | 18 | 22 | 21 | 20 | 20 | 22 | 18 | 19 | 22 | 23 | 20 | 20 | 22 | 22 |
48 | 22 | 21 | 20 | 16 | 18 | 22 | 23 | 20 | 26 | 27 | 26 | 23 | 24 | 24 | 22 | 21 |
min: 2^15, max: 2^27, mean: 2^20.4