Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Develop/v0.3.3 #175

Merged
merged 12 commits into from
Dec 14, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
210 changes: 84 additions & 126 deletions examples/cvae.ipynb

Large diffs are not rendered by default.

2 changes: 1 addition & 1 deletion pixyz/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
name = "pixyz"
__version__ = "0.3.2"
__version__ = "0.3.3"
2 changes: 2 additions & 0 deletions pixyz/distributions/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -28,6 +28,7 @@
)

from .poe import ProductOfNormal, ElementWiseProductOfNormal
from .moe import MixtureOfNormal

from .mixture_distributions import MixtureModel

Expand Down Expand Up @@ -55,6 +56,7 @@
'MarginalizeVarDistribution',
'ProductOfNormal',
'ElementWiseProductOfNormal',
'MixtureOfNormal',
'MixtureModel',

'TransformedDistribution',
Expand Down
87 changes: 69 additions & 18 deletions pixyz/distributions/distributions.py
Original file line number Diff line number Diff line change
Expand Up @@ -69,14 +69,20 @@ def _reversed_name_dict(self):
def __apply_dict(dict, var):
return [dict[var_name] if var_name in dict else var_name for var_name in var]

def sample(self, values, sample_option):
global_input_var = self.__apply_dict(self._reversed_name_dict, self.dist.input_var)
def _get_local_input_dict(self, values, input_var=None):
if not input_var:
input_var = self.dist.input_var
global_input_var = self.__apply_dict(self._reversed_name_dict, input_var)

if any(var_name not in values for var_name in global_input_var):
raise ValueError("lack of some condition variables")
raise ValueError("lack of some variables")
input_dict = get_dict_values(values, global_input_var, return_dict=True)

local_input_dict = replace_dict_keys(input_dict, self.name_dict)
return local_input_dict

def sample(self, values, sample_option):
local_input_dict = self._get_local_input_dict(values)

# Overwrite log_prob_option with self.option to give priority to local settings such as batch_n
option = dict(sample_option)
Expand All @@ -94,19 +100,34 @@ def sample(self, values, sample_option):
return sample

def get_log_prob(self, values, log_prob_option):
global_input_var = self.__apply_dict(self._reversed_name_dict, list(self.dist.var) + list(self.dist.cond_var))

if any(var_name not in values for var_name in global_input_var):
raise ValueError("lack of some variables")
input_dict = get_dict_values(values, global_input_var, return_dict=True)
local_input_dict = replace_dict_keys(input_dict, self.name_dict)
local_input_dict = self._get_local_input_dict(values, list(self.dist.var) + list(self.dist.cond_var))

# Overwrite log_prob_option with self.option to give priority to local settings such as batch_n
option = dict(log_prob_option)
option.update(self.option)
log_prob = self.dist.get_log_prob(local_input_dict, **option)
return log_prob

def get_params(self, params_dict={}, **kwargs):
orig_params_dict = self._get_local_input_dict(params_dict)
params = self.dist.get_params(orig_params_dict, **kwargs)
return params

def sample_mean(self, values={}):
local_input_dict = self._get_local_input_dict(values)
result = self.dist.sample_mean(local_input_dict)
return result

def sample_variance(self, values={}):
local_input_dict = self._get_local_input_dict(values)
result = self.dist.sample_variance(local_input_dict)
return result

def get_entropy(self, values={}, sum_features=True, feature_dims=None):
local_input_dict = self._get_local_input_dict(values)
result = self.dist.get_entropy(local_input_dict, sum_features, feature_dims)
return result

@property
def input_var(self):
return self.__apply_dict(self._reversed_name_dict, self.dist.input_var)
Expand Down Expand Up @@ -673,6 +694,34 @@ def _get_log_prob(self, x_dict, sum_features=True, feature_dims=None, **kwargs):
return 0
return log_prob

def get_params(self, params_dict={}, **kwargs):
if len(self.var) != 1:
raise NotImplementedError()
for factor in self.factors():
result = factor.get_params(params_dict, **kwargs)
return result

def sample_mean(self, x_dict={}):
if len(self.var) != 1:
raise NotImplementedError()
for factor in self.factors():
result = factor.sample_variance(x_dict)
return result

def sample_variance(self, x_dict={}):
if len(self.var) != 1:
raise NotImplementedError()
for factor in self.factors():
result = factor.sample_variance(x_dict)
return result

def get_entropy(self, x_dict={}, sum_features=True, feature_dims=None):
if len(self.var) != 1:
raise NotImplementedError()
for factor in self.factors():
result = factor.get_entropy(x_dict, sum_features, feature_dims)
return result

@property
def has_reparam(self):
return all(factor.dist.has_reparam for factor in self.factors())
Expand Down Expand Up @@ -1043,6 +1092,8 @@ def sample_mean(self, x_dict={}):
1.2810, -0.6681]])

"""
if self.graph:
return self.graph.sample_mean(x_dict)
raise NotImplementedError()

def sample_variance(self, x_dict={}):
Expand Down Expand Up @@ -1073,6 +1124,8 @@ def sample_variance(self, x_dict={}):
tensor([[1., 1., 1., 1., 1., 1., 1., 1., 1., 1.]])

"""
if self.graph:
return self.graph.sample_variance(x_dict)
raise NotImplementedError()

def get_log_prob(self, x_dict, sum_features=True, feature_dims=None, **kwargs):
Expand Down Expand Up @@ -1154,6 +1207,13 @@ def get_entropy(self, x_dict={}, sum_features=True, feature_dims=None):
tensor([14.1894])

"""
if self.graph:
return self.graph.get_entropy(x_dict, sum_features, feature_dims)
raise NotImplementedError()

def get_params(self, params_dict={}, **kwargs):
if self.graph:
return self.graph.get_params(params_dict, **kwargs)
raise NotImplementedError()

def log_prob(self, sum_features=True, feature_dims=None):
Expand Down Expand Up @@ -1700,15 +1760,6 @@ def __repr__(self):
def forward(self, *args, **kwargs):
return self.p(*args, **kwargs)

def sample_mean(self, x_dict={}):
return self.p.sample_mean(x_dict)

def sample_variance(self, x_dict={}):
return self.p.sample_variance(x_dict)

def get_entropy(self, x_dict={}, sum_features=True, feature_dims=None):
return self.p.get_entropy(x_dict, sum_features, feature_dims)

@property
def distribution_name(self):
return self.p.distribution_name
Expand Down
169 changes: 169 additions & 0 deletions pixyz/distributions/moe.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
from __future__ import print_function
import torch
from torch import nn
import numpy as np

from ..utils import tolist, get_dict_values
from ..distributions import Normal


class MixtureOfNormal(Normal):
r"""Mixture of normal distributions.
.. math::
p(z|x,y) = p(z|x) + p(z|y)
In this models, :math:`p(z|x)` and :math:`p(a|y)` perform as `experts`.

References
----------
[Shi+ 2019] Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models

"""

def __init__(self, p=[], weight_modalities=None, name="p", features_shape=torch.Size()):
"""
Parameters
----------
p : :obj:`list` of :class:`pixyz.distributions.Normal`.
List of experts.
name : :obj:`str`, defaults to "p"
Name of this distribution.
This name is displayed in prob_text and prob_factorized_text.
features_shape : :obj:`torch.Size` or :obj:`list`, defaults to torch.Size())
Shape of dimensions (features) of this distribution.
"""

p = tolist(p)
if len(p) == 0:
raise ValueError()

if weight_modalities is None:
weight_modalities = torch.ones(len(p)) / float(len(p))

elif len(weight_modalities) != len(p):
raise ValueError()

var = p[0].var
cond_var = []

for _p in p:
if _p.var != var:
raise ValueError()

cond_var += _p.cond_var

cond_var = list(set(cond_var))

super().__init__(var=var, cond_var=cond_var, name=name, features_shape=features_shape)
self.p = nn.ModuleList(p)
self.weight_modalities = weight_modalities

def _get_expert_params(self, params_dict={}, **kwargs):
"""Get the output parameters of all experts.
Parameters
----------
params_dict : dict
**kwargs
Arbitrary keyword arguments.
Returns
-------
loc : torch.Tensor
Concatenation of mean vectors for specified experts. (n_expert, n_batch, output_dim)
scale : torch.Tensor
Concatenation of the square root of a diagonal covariance matrix for specified experts.
(n_expert, n_batch, output_dim)
weight : np.array
(n_expert, )
"""

loc = []
scale = []

for i, _p in enumerate(self.p):
inputs_dict = get_dict_values(params_dict, _p.cond_var, True)
if len(inputs_dict) != 0:
outputs = _p.get_params(inputs_dict, **kwargs)
loc.append(outputs["loc"])
scale.append(outputs["scale"])

loc = torch.stack(loc)
scale = torch.stack(scale)

return loc, scale

def get_params(self, params_dict={}, **kwargs):
# experts
if len(params_dict) > 0:
loc, scale = self._get_expert_params(params_dict, **kwargs) # (n_expert, n_batch, output_dim)
else:
raise ValueError()

output_loc, output_scale = self._compute_expert_params(loc, scale)
output_dict = {"loc": output_loc, "scale": output_scale}

return output_dict

def _compute_expert_params(self, loc, scale):
"""Compute parameters for the product of experts.
Is is assumed that unspecified experts are excluded from inputs.
Parameters
----------
loc : torch.Tensor
Concatenation of mean vectors for specified experts. (n_expert, n_batch, output_dim)
scale : torch.Tensor
Concatenation of the square root of a diagonal covariance matrix for specified experts.
(n_expert, n_batch, output_dim)
Returns
-------
output_loc : torch.Tensor
Mean vectors for this distribution. (n_batch, output_dim)
output_scale : torch.Tensor
The square root of diagonal covariance matrices for this distribution. (n_batch, output_dim)
"""
num_samples = loc.shape[1]

idx_start = []
idx_end = []
for k in range(0, len(self.weight_modalities)):
if k == 0:
i_start = 0
else:
i_start = int(idx_end[k - 1])
if k == len(self.weight_modalities) - 1:
i_end = num_samples
else:
i_end = i_start + int(np.floor(num_samples * self.weight_modalities[k]))
idx_start.append(i_start)
idx_end.append(i_end)

idx_end[-1] = num_samples

output_loc = torch.cat([loc[k, idx_start[k]:idx_end[k], :] for k in range(len(self.weight_modalities))])
output_scale = torch.cat([scale[k, idx_start[k]:idx_end[k], :] for k in range(len(self.weight_modalities))])

return output_loc, output_scale

def _get_input_dict(self, x, var=None):
if var is None:
var = self.input_var

if type(x) is torch.Tensor:
checked_x = {var[0]: x}

elif type(x) is list:
# TODO: we need to check if all the elements contained in this list are torch.Tensor.
checked_x = dict(zip(var, x))

elif type(x) is dict:
# point of modification
checked_x = x

else:
raise ValueError("The type of input is not valid, got %s." % type(x))

return get_dict_values(checked_x, var, return_dict=True)

def get_log_prob(self, x_dict, sum_features=True, feature_dims=None):
log_prob = torch.stack([w * p.get_log_prob(x_dict, sum_features=sum_features, feature_dims=feature_dims) for p, w in zip(self.p, self.weight_modalities)])
log_prob = torch.logsumexp(log_prob, dim=0)

return log_prob
Loading