Skip to content

Commit

Permalink
[Frontend][TFLite] Densify Op added (apache#7048)
Browse files Browse the repository at this point in the history
* [Frontend][TFLite] Densify Op added

* [1] Review comments handled

* TODO added for sparse_to_dense Op usage

* stale comments removed
  • Loading branch information
ANSHUMAN TRIPATHY authored and masahi committed Jan 14, 2021
1 parent 5f6a087 commit 5140d73
Show file tree
Hide file tree
Showing 2 changed files with 253 additions and 10 deletions.
215 changes: 205 additions & 10 deletions python/tvm/relay/frontend/tflite.py
Original file line number Diff line number Diff line change
Expand Up @@ -65,6 +65,7 @@ def __init__(self, model, subgraph, exp_tab):
self.builtin_op_code = build_str_map(BuiltinOperator())
self.activation_fn_type = build_str_map(ActivationFunctionType())
self.builtin_options = build_str_map(BuiltinOptions())
self.prefetched_nodes = {}

# Add more operators
self.convert_map = {
Expand All @@ -80,6 +81,7 @@ def __init__(self, model, subgraph, exp_tab):
"CONCATENATION": self.convert_concatenation,
"CONV_2D": self.convert_conv2d,
"COS": self.convert_cos,
"DENSIFY": self.convert_densify,
"DEPTH_TO_SPACE": self.convert_depth_to_space,
"DEPTHWISE_CONV_2D": self.convert_depthwise_conv2d,
"DEQUANTIZE": self.convert_dequantize,
Expand Down Expand Up @@ -200,6 +202,10 @@ def convert_op_to_relay(self):
assert isinstance(op, Operator)
ret = self.convert_map[op_code_str](op)

# In case the Op can be prefetched, the output can be optimized out
if ret is None:
continue

if len(output_tensors) == 1:
tensor_idx = output_tensors[0].tensor_idx
self.exp_tab.set_expr(get_tensor_name(self.subgraph, tensor_idx), ret)
Expand Down Expand Up @@ -338,7 +344,8 @@ def get_tensor_type_as_numpy(self, tensor_wrapper):
"Tensor type '{}' currently not supported".format(tensor_wrapper.tensor.Type())
)

def get_tensor_value(self, tensor_wrapper):
# pylint: disable=no-else-return
def get_tensor_value(self, tensor_wrapper, is_sparse=False):
"""Get tensor buffer value from given tensor wrapper"""
assert isinstance(tensor_wrapper, TensorWrapper)

Expand All @@ -350,7 +357,10 @@ def get_tensor_value(self, tensor_wrapper):
else:
shape = []

return np.frombuffer(data, dtype=dtype).reshape(shape)
if is_sparse:
return np.frombuffer(data, dtype=dtype)
else:
return np.frombuffer(data, dtype=dtype).reshape(shape)

def get_tensor_type_str(self, tensor_type):
"""Get tensor type string representation when given TFLite tensor type"""
Expand Down Expand Up @@ -1662,11 +1672,15 @@ def _convert_reduce(self, relay_op, op):
axis = tuple(axis_value) if len(axis_value.shape) > 0 else tuple((axis_value.item(),))

# Options - keep_dims (bool)
assert op.BuiltinOptionsType() == BuiltinOptions.ReducerOptions
reduce_options = ReducerOptions()
op_options = op.BuiltinOptions()
reduce_options.Init(op_options.Bytes, op_options.Pos)
keep_dims = reduce_options.KeepDims()
# In case Options are not present, set keep_dims to False(default)
if op.BuiltinOptionsType():
assert op.BuiltinOptionsType() == BuiltinOptions.ReducerOptions
reduce_options = ReducerOptions()
op_options = op.BuiltinOptions()
reduce_options.Init(op_options.Bytes, op_options.Pos)
keep_dims = reduce_options.KeepDims()
else:
keep_dims = False

if input_tensor.qnn_params:
in_expr = _op.cast(in_expr, "int32")
Expand Down Expand Up @@ -2026,7 +2040,11 @@ def convert_conv(self, op, conv_type):
else:
weight_expr = _op.transpose(weight_expr, axes=(1, 2, 3, 0))
else:
weight_value = self.get_tensor_value(weight_tensor)
if self.is_prefetched(weight_tensor.tensor_idx):
weight_value = self.get_prefetched_node(weight_tensor.tensor_idx)
else:
weight_value = self.get_tensor_value(weight_tensor)

# TFLite kernel layout:
# convolution:
# OC KH KW IC, we require KH KW IC OC (HWIO)
Expand Down Expand Up @@ -3196,22 +3214,199 @@ def convert_matrix_diag(self, op):
out = _op.matrix_set_diag(input_expr, diagonal_expr)
return out

def convert_densify(self, op):
"""Convert TFLite DENSIFY"""
input_tensors = self.get_input_tensors(op)
assert len(input_tensors) == 1, "input tensors length should be 1"

output_tensors = self.get_output_tensors(op)
assert len(output_tensors) == 1, "output tensors length should be 1"
output_tensor = output_tensors[0]

sparse_weight_tensor = input_tensors[0]
sparse_weight_tensor_type_str = self.get_tensor_type_str(sparse_weight_tensor.tensor.Type())

# NOTE: With current implementation in TFLite, Densify Op does not need to be present
# in runtime.
# TODO(ANSHUMAN87): we need to use the sparse_indices output
# from below function and use that in sparse_to_dense Op.
# Once the stack corruption issue is resolved in sparse_to_dense Op.
_, dense_weight = prepare_dense_matrix_from_sparse(
sparse_weight_tensor.tensor,
self.get_tensor_value(sparse_weight_tensor, is_sparse=True),
sparse_weight_tensor_type_str,
)

self.set_prefetched_node(output_tensor.tensor_idx, dense_weight)

def get_expr(self, input_tensor_idx):
return self.exp_tab.get_expr(get_tensor_name(self.subgraph, input_tensor_idx))

def has_expr(self, input_tensor_idx):
return self.exp_tab.has_expr(get_tensor_name(self.subgraph, input_tensor_idx))

def get_tensor_expr(self, tensor):
def is_prefetched(self, input_tensor_idx):
return (
self.prefetched_nodes.get(get_tensor_name(self.subgraph, input_tensor_idx)) is not None
)

def set_prefetched_node(self, input_tensor_idx, value):
self.prefetched_nodes[get_tensor_name(self.subgraph, input_tensor_idx)] = value

def get_prefetched_node(self, input_tensor_idx):
return self.prefetched_nodes[get_tensor_name(self.subgraph, input_tensor_idx)]

def get_tensor_expr(self, tensor, is_sparse=False):
""" Return the Relay expr for tensor. """
if self.has_expr(tensor.tensor_idx):
expr = self.get_expr(tensor.tensor_idx)
else:
type_str = self.get_tensor_type_str(tensor.tensor.Type())
expr = self.exp_tab.new_const(self.get_tensor_value(tensor), dtype=type_str)
expr = self.exp_tab.new_const(self.get_tensor_value(tensor, is_sparse), dtype=type_str)
return expr


# pylint: disable=no-else-return
def prepare_dense_matrix_from_sparse(sparse_tensor, sparse_tensor_value, sparse_tensor_type):
""" Prepare sparse indices and dense matrix from TFLite sparse parameters. """
# The function is implemented based on TFLite sparse parameter specifications
# Please refer
# https://github.com/tensorflow/tensorflow/blob/master/tensorflow/lite/schema/schema.fbs#L89
# for details about each parameters
sparsity = sparse_tensor.Sparsity()
dense_shape = sparse_tensor.ShapeAsNumpy()
orig_rank = len(dense_shape)

# The traversal order of the dimensions defined in the `shape` field of the to be dense tensor.
traversal_order = sparsity.TraversalOrderAsNumpy()

# For an n-dimensional tensor with a k-dimensional block (0 <= k <= n),
# stores how a block dimension in (dn, ..., dn+k-1) maps to the original
# tensor dimension in (d0, ..., dn). It's stored in the order of (dn, ..., dn+k-1).
# If not block-sparse, this field is NULL.
block_map = sparsity.BlockMapAsNumpy()

total_rank = sparsity.TraversalOrderLength()
dense_mat = np.full(shape=dense_shape, fill_value=0, dtype=sparse_tensor_type).flatten()

from enum import Enum

# NOTE: Here the Vector term is borrowed from TFLite spec.
class VectorType(Enum):
Empty = 0
Int32 = 1
Uint16 = 2
Uint8 = 3

def _get_vector_flag(v_type):
if VectorType(v_type) == VectorType.Int32:
return N.Int32Flags
elif VectorType(v_type) == VectorType.Uint16:
return N.Uint16Flags
elif VectorType(v_type) == VectorType.Uint8:
return N.Uint8Flags
else:
raise tvm.error.OpNotImplemented("The provided type {} is not supported".format(v_type))

def _get_flattened_index(indices, shape):
index = 0
sub_elements = 1
for i in reversed(range(0, len(dense_shape))):
index += indices[i] * sub_elements
sub_elements *= shape[i]
return index

# DimensionMetadata per dimension: the metadata needed for
# each dimension to locate the non-zero values in the original dense tensor
# inline with traversal order parameter.
#
# sp_format has 2 possible values: {DENSE = 0, SPARSE_CSR = 1}
# If format = DENSE{0} : DenseSize represents size of that dimension
# If format = SPARSE_CSR{1} : array_segments represents how to segment the indices array,
# each segment corresponds to one element in the previous dimension. array_indices
# represents the index of the non-zero elements within this dimension
# (as those in the CSR matrix format, where the first array is row pointers
# and the second array is column indices).
sp_format = np.zeros(sparsity.DimMetadataLength())
dim_metadata = [None] * (2 * sparsity.DimMetadataLength())

# Below loop will fetch all meta data per dimension based on format type
# Dense or Sparse and will put it in an agnostic array for easy access
# while preparing dense buffer or indices.
for i in range(sparsity.DimMetadataLength()):
sp_format[i] = sparsity.DimMetadata(i).Format()
if sp_format[i] == 0:
dim_metadata[2 * i] = [sparsity.DimMetadata(i).DenseSize()]
else:
from flatbuffers import number_types as N

dim_metadata[2 * i] = (
sparsity.DimMetadata(i)
.ArraySegments()
.GetVectorAsNumpy(
flags=_get_vector_flag(sparsity.DimMetadata(i).ArraySegmentsType()), off=4
)
)
dim_metadata[2 * i + 1] = (
sparsity.DimMetadata(i)
.ArrayIndices()
.GetVectorAsNumpy(
flags=_get_vector_flag(sparsity.DimMetadata(i).ArrayIndicesType()), off=4
)
)

block_dim = 0
block_size = np.zeros(sparsity.BlockMapLength())

# Block size parameter if encoded in BSR format
for i in range(orig_rank):
if block_dim < sparsity.BlockMapLength() and block_map[block_dim] == i:
orig_dim = traversal_order[orig_rank + block_dim]
block_size[block_dim] = sparsity.DimMetadata(orig_dim).DenseSize()
block_dim += 1

indices_list = []

# Below function iterates through each applicable indices per dimension
# based on format type specified and finaly produce the dense matrix and the NZ indices.
def _def_prepare_dense_matrix_from_sparse(indices, level, prev_idx):
if level == len(indices):
start_pos = 0
orig_idx = np.zeros(orig_rank, dtype="int32")
while start_pos < orig_rank:
orig_idx[traversal_order[start_pos]] = indices[start_pos]
start_pos += 1
while start_pos < len(indices):
block_idx = traversal_order[start_pos] - orig_rank
orig_dim = block_map[block_idx]
orig_idx[orig_dim] = orig_idx[orig_dim] * block_size[block_idx] + indices[start_pos]
start_pos += 1
indices_list.append(orig_idx)
nonlocal value_idx
dense_mat[_get_flattened_index(orig_idx, dense_shape)] = sparse_tensor_value[value_idx]
value_idx += 1
else:
metadata_idx = 2 * level
if sp_format[level] == 0:
shape_of_level = dim_metadata[metadata_idx][0]
for idx in range(shape_of_level):
indices[level] = idx
_def_prepare_dense_matrix_from_sparse(
indices, level + 1, prev_idx * shape_of_level + idx
)
else:
array_segments = dim_metadata[metadata_idx]
array_indices = dim_metadata[metadata_idx + 1]
for idx in range(array_segments[prev_idx], array_segments[prev_idx + 1]):
indices[level] = array_indices[idx]
_def_prepare_dense_matrix_from_sparse(indices, level + 1, idx)

indices = np.zeros(total_rank)
value_idx = 0
_def_prepare_dense_matrix_from_sparse(indices, 0, 0)
return np.array(indices_list, dtype="int32"), dense_mat.reshape(dense_shape)


def get_scalar_from_constant(expr):
""" Returns scalar value from Relay constant scalar. """
assert (
Expand Down
48 changes: 48 additions & 0 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -3691,6 +3691,50 @@ def test_forward_mobilenet_v3():
)


#######################################################################
# Mobilenet V1 Sparse
# -----------------


def test_forward_sparse_mobilenet_v1():
"""Test the Sparse version of Mobilenet V1 TF Lite model."""
# MobilenetV1
tflite_model_file = download_testdata(
"https://storage.googleapis.com/fast-convnets/tflite-models/mbv1_140_90_12b4_720.tflite",
"mbv1_140_90_12b4_720.tflite",
)
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32")
tflite_output = run_tflite_graph(tflite_model_buf, data)
tvm_output = run_tvm_graph(tflite_model_buf, data, "float_image_input")
tvm.testing.assert_allclose(
np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5
)


#######################################################################
# Mobilenet V2 Sparse
# -----------------


def test_forward_sparse_mobilenet_v2():
"""Test the Sparse version of Mobilenet V2 TF Lite model."""
# MobilenetV1
tflite_model_file = download_testdata(
"https://storage.googleapis.com/fast-convnets/tflite-models/mbv2_200_85_11-16b2_744.tflite",
"mbv2_200_85_11-16b2_744.tflite",
)
with open(tflite_model_file, "rb") as f:
tflite_model_buf = f.read()
data = np.random.uniform(size=(1, 224, 224, 3)).astype("float32")
tflite_output = run_tflite_graph(tflite_model_buf, data)
tvm_output = run_tvm_graph(tflite_model_buf, data, "float_image_input")
tvm.testing.assert_allclose(
np.squeeze(tvm_output[0]), np.squeeze(tflite_output[0]), rtol=1e-5, atol=1e-5
)


#######################################################################
# Inception
# ---------
Expand Down Expand Up @@ -4197,6 +4241,10 @@ def test_forward_mediapipe_hand_landmark():
test_forward_coco_ssd_mobilenet_v1()
test_forward_mediapipe_hand_landmark()

# End to End Sparse models
test_forward_sparse_mobilenet_v1()
test_forward_sparse_mobilenet_v2()

# End to End quantized
test_forward_qnn_inception_v1_net()
test_forward_qnn_mobilenet_v1_net()
Expand Down

0 comments on commit 5140d73

Please sign in to comment.