forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'tir-tensor-intrin' into auto-tensorize-vnni
- Loading branch information
Showing
7 changed files
with
253 additions
and
75 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,151 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
# pylint: disable=invalid-name | ||
"""Intrinsics for ARM tensorization.""" | ||
from tvm.script import tir as T | ||
from .. import TensorIntrin | ||
|
||
|
||
# TODO(masahi): Parametrize the TVMScript description of dot product by | ||
# shape and dtype, and share the common description with x86. | ||
|
||
|
||
@T.prim_func | ||
def dot_product_4x4_i8i8i32_desc( | ||
A: T.Buffer((4,), "int8", offset_factor=1), | ||
B: T.Buffer((4, 4), "int8", offset_factor=1), | ||
C: T.Buffer((4,), "int32", offset_factor=1), | ||
) -> None: | ||
""" | ||
A description for 4x4 dot product. | ||
""" | ||
with T.block("root"): | ||
T.reads(C[0:4], A[0:4], B[0:4, 0:4]) | ||
T.writes(C[0:4]) | ||
for i in T.serial(0, 4): | ||
with T.init(): | ||
C[i] = T.int32(0) | ||
for k in T.serial(0, 4): | ||
with T.block("update"): | ||
vi, vk = T.axis.remap("SR", [i, k]) | ||
C[vi] = C[vi] + T.cast(A[vk], "int32") * T.cast(B[vi, vk], "int32") | ||
|
||
|
||
@T.prim_func | ||
def dot_product_4x4_i8i8i32_neon( | ||
A: T.Buffer((4,), "int8", offset_factor=1), | ||
B: T.Buffer((4, 4), "int8", offset_factor=1), | ||
C: T.Buffer((4,), "int32", offset_factor=1), | ||
) -> None: | ||
""" | ||
A implementation for 4x4 dot product, applicable for any ARM CPUs supporting NEON. | ||
""" | ||
with T.block("root"): | ||
T.reads(C[0:4], A[0:4], B[0:4, 0:4]) | ||
T.writes(C[0:4]) | ||
|
||
A_int8 = A.vload([0], "int8x4") | ||
re_int32 = T.reinterpret(A_int8, dtype="int32") | ||
vec_ai32 = T.broadcast(re_int32, 2) | ||
vec_a = T.reinterpret(vec_ai32, dtype="int8x8") | ||
|
||
vec_b = B.vload([0, 0], dtype="int8x16") | ||
|
||
# TODO(masahi): Remove duplication when inlined function call is supported | ||
vec_b_low = T.vectorlow(vec_b, dtype="int8x8") | ||
|
||
multiply_low = T.call_llvm_pure_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.smull.v8i16"), | ||
T.uint32(2), | ||
vec_a, | ||
vec_b_low, | ||
dtype="int16x8", | ||
) | ||
|
||
pairwise_reduction_low = T.call_llvm_pure_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.saddlp.v4i32.v8i16"), | ||
T.uint32(1), | ||
multiply_low, | ||
dtype="int32x4", | ||
) | ||
|
||
vec_b_high = T.vectorhigh(vec_b, dtype="int8x8") | ||
|
||
multiply_high = T.call_llvm_pure_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.smull.v8i16"), | ||
T.uint32(2), | ||
vec_a, | ||
vec_b_high, | ||
dtype="int16x8", | ||
) | ||
|
||
pairwise_reduction_high = T.call_llvm_pure_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.saddlp.v4i32.v8i16"), | ||
T.uint32(1), | ||
multiply_high, | ||
dtype="int32x4", | ||
) | ||
|
||
C[T.ramp(T.int32(0), 1, 4)] += T.call_llvm_pure_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.addp.v4i32"), | ||
T.uint32(2), | ||
pairwise_reduction_low, | ||
pairwise_reduction_high, | ||
dtype="int32x4", | ||
) | ||
|
||
|
||
@T.prim_func | ||
def dot_product_4x4_i8i8i32_sdot( | ||
A: T.Buffer((4,), "int8", offset_factor=1), | ||
B: T.Buffer((4, 4), "int8", offset_factor=1), | ||
C: T.Buffer((4,), "int32", offset_factor=1), | ||
) -> None: | ||
""" | ||
A implementation for 4x4 dot product, applicable for ARM CPUs supporting sdot. | ||
""" | ||
with T.block("root"): | ||
T.reads(C[0:4], A[0:4], B[0:4, 0:4]) | ||
T.writes(C[0:4]) | ||
|
||
A_i8x4 = A.vload([0], "int8x4") | ||
A_i32 = T.reinterpret(A_i8x4, dtype="int32") | ||
vec_ai32 = T.broadcast(A_i32, 4) | ||
vec_a = T.reinterpret(vec_ai32, dtype="int8x16") | ||
|
||
vec_b = B.vload([0, 0], dtype="int8x16") | ||
|
||
C[T.ramp(T.int32(0), 1, 4)] += T.call_llvm_pure_intrin( | ||
T.llvm_lookup_intrinsic_id("llvm.aarch64.neon.sdot.v4i32.v16i8"), | ||
T.uint32(3), | ||
T.int32x4(0), | ||
vec_a, | ||
vec_b, | ||
dtype="int32x4", | ||
) | ||
|
||
|
||
ARM_DOT_4x4_i8_NEON_INTRIN = "dot_4x4_i8i8s32_neon" | ||
ARM_DOT_4x4_i8_SDOT_INTRIN = "dot_4x4_i8i8s32_sdot" | ||
|
||
TensorIntrin.register( | ||
ARM_DOT_4x4_i8_NEON_INTRIN, dot_product_4x4_i8i8i32_desc, dot_product_4x4_i8i8i32_neon | ||
) | ||
|
||
TensorIntrin.register( | ||
ARM_DOT_4x4_i8_SDOT_INTRIN, dot_product_4x4_i8i8i32_desc, dot_product_4x4_i8i8i32_sdot | ||
) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.