Skip to content

Commit

Permalink
v0.1.6: update README
Browse files Browse the repository at this point in the history
  • Loading branch information
mathcombio committed Jul 7, 2023
1 parent c225a76 commit 2eea44b
Showing 1 changed file with 13 additions and 5 deletions.
18 changes: 13 additions & 5 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# COMA: efficient structure-constrained molecular generation using COnstractive and MArgin losses

- Latest update: 05 April 2023
- Latest update: 07 July 2023

<img src="figs/overview_of_COMA.png" alt="thumbnail" width="600px" />

Expand All @@ -10,13 +10,13 @@ For a given source molecule, COMA generates a novel molecule with more improved

To achieve property improvement and high structural similarity simultaneously, COMA exploits reinforcement learning and metric learning.

For more detail, please refer to Choi, J., Seo, S. & Park, S. **COMA: efficient structure-constrained molecular generation using contractive and margin losses**. *J Cheminform* 15, 8 (2023). https://doi.org/10.1186/s13321-023-00679-y
For more detail, please refer to J. Choi, S. Seo, and S. Park. **COMA: efficient structure-constrained molecular generation using contractive and margin losses**. *J Cheminform* 15, 8 (2023). https://doi.org/10.1186/s13321-023-00679-y


--------------------------------------------------------------------------------------------
## SYSTEM REQUIERMENTS:

- (If GPU is available) COMA requires GPU memory larger than 6GB.
- (If GPU is available) COMA may require GPU memory larger than 6GB.
- Available cudatoolkit versions: 10.2, 11.1, and 11.3

- **COMA is only for Python 3.7**
Expand Down Expand Up @@ -46,11 +46,19 @@ cd data
tar -xzvf drd2.tar.gz
tar -xzvf qed.tar.gz
tar -xzvf logp04.tar.gz
tar -xzvf logp06.tar.gz=
tar -xzvf logp06.tar.gz
cd ..
```

- A training dataset for COMA is generated by using the jupyter notebooks 'generate_triplet_data_{PROPERTY_NAME}.ipynb' in the data directory
- After decompressing, an user can find the following files and is ready to run the provided scripts.
- rdkit_test.txt
- rdkit_train_pairs.txt
- rdkit_train_src.txt
- rdkit_train_tar.txt
- rdkit_train_triplet.txt
- rdkit_valid.txt

- The details of how to create a triplet dataset are described in the Algorithm S3 of our paper.


--------------------------------------------------------------------------------------------
Expand Down

0 comments on commit 2eea44b

Please sign in to comment.