Skip to content
/ MolBit Public

De novo Drug Design via Binary Representations of SMILES for avoiding the Posterior Collapse Problem (BIBM 2021)

License

Notifications You must be signed in to change notification settings

mathcom/MolBit

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MolBit: De novo Drug Design via Binary Representations of SMILES for avoiding the Posterior Collapse Problem

thumbnail

Many drug design studies have proposed combinations of VAEs and RNNs to generate SMILES strings.

Although those RNN-VAE models have good validity performance, they suffer from the posterior collapse problem, in which every latent vector has an identical molecular property distribution.

We proposed a Gumbel-Softmax-based generative model called MolBit to avoid the posterior collapse problem.


Paper

https://doi.org/10.1109/BIBM52615.2021.9669668