Skip to content

Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#) with zero dependencies

License

Notifications You must be signed in to change notification settings

mattc-eostar/m2cgen

 
 

Repository files navigation

m2cgen

Build Status Coverage Status License: MIT Python Versions PyPI Version Downloads

m2cgen (Model 2 Code Generator) - is a lightweight library which provides an easy way to transpile trained statistical models into a native code (Python, C, Java, Go, JavaScript, Visual Basic, C#, PowerShell, R, PHP).

Installation

Supported Python version is >= 3.5.

pip install m2cgen

Supported Languages

  • C
  • C#
  • Go
  • Java
  • JavaScript
  • PHP
  • PowerShell
  • Python
  • R
  • Visual Basic

Supported Models

Classification Regression
Linear
  • LogisticRegression
  • LogisticRegressionCV
  • PassiveAggressiveClassifier
  • RidgeClassifier
  • RidgeClassifierCV
  • SGDClassifier
  • ARDRegression
  • BayesianRidge
  • ElasticNet
  • ElasticNetCV
  • HuberRegressor
  • Lars
  • LarsCV
  • Lasso
  • LassoCV
  • LassoLars
  • LassoLarsCV
  • LassoLarsIC
  • LinearRegression
  • OrthogonalMatchingPursuit
  • OrthogonalMatchingPursuitCV
  • PassiveAggressiveRegressor
  • Ridge
  • RidgeCV
  • SGDRegressor
  • TheilSenRegressor
SVM
  • LinearSVC
  • NuSVC
  • SVC
  • LinearSVR
  • NuSVR
  • SVR
Tree
  • DecisionTreeClassifier
  • ExtraTreeClassifier
  • DecisionTreeRegressor
  • ExtraTreeRegressor
Random Forest
  • ExtraTreesClassifier
  • LGBMClassifier(rf booster only)
  • RandomForestClassifier
  • XGBRFClassifier(binary only, multiclass is not supported yet)
  • ExtraTreesRegressor
  • LGBMRegressor(rf booster only)
  • RandomForestRegressor
  • XGBRFRegressor
Boosting
  • LGBMClassifier(gbdt/dart/goss booster only)
  • XGBClassifier(gbtree/gblinear booster only)
    • LGBMRegressor(gbdt/dart/goss booster only)
    • XGBRegressor(gbtree/gblinear booster only)

    Classification Output

    Linear/Linear SVM

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; signed distance of the sample to the hyperplane per each class.

    Comment

    The output is consistent with the output of LinearClassifierMixin.decision_function.

    SVM

    Binary

    Scalar value; signed distance of the sample to the hyperplane for the second class.

    Multiclass

    Vector value; one-vs-one score for each class, shape (n_samples, n_classes * (n_classes-1) / 2).

    Comment

    The output is consistent with the output of BaseSVC.decision_function when the decision_function_shape is set to ovo.

    Tree/Random Forest/XGBoost/LightGBM

    Binary

    Vector value; class probabilities.

    Multiclass

    Vector value; class probabilities.

    Comment

    The output is consistent with the output of the predict_proba method of DecisionTreeClassifier/ForestClassifier/XGBClassifier/LGBMClassifier.

    Usage

    Here's a simple example of how a linear model trained in Python environment can be represented in Java code:

    from sklearn.datasets import load_boston
    from sklearn import linear_model
    import m2cgen as m2c
    
    boston = load_boston()
    X, y = boston.data, boston.target
    
    estimator = linear_model.LinearRegression()
    estimator.fit(X, y)
    
    code = m2c.export_to_java(estimator)

    Generated Java code:

    public class Model {
    
        public static double score(double[] input) {
            return (((((((((((((36.45948838508965) + ((input[0]) * (-0.10801135783679647))) + ((input[1]) * (0.04642045836688297))) + ((input[2]) * (0.020558626367073608))) + ((input[3]) * (2.6867338193449406))) + ((input[4]) * (-17.76661122830004))) + ((input[5]) * (3.8098652068092163))) + ((input[6]) * (0.0006922246403454562))) + ((input[7]) * (-1.475566845600257))) + ((input[8]) * (0.30604947898516943))) + ((input[9]) * (-0.012334593916574394))) + ((input[10]) * (-0.9527472317072884))) + ((input[11]) * (0.009311683273794044))) + ((input[12]) * (-0.5247583778554867));
        }
    }

    You can find more examples of generated code for different models/languages here.

    CLI

    m2cgen can be used as a CLI tool to generate code using serialized model objects (pickle protocol):

    $ m2cgen <pickle_file> --language <language> [--indent <indent>] [--class_name <class_name>]
             [--module_name <module_name>] [--package_name <package_name>] [--namespace <namespace>]
             [--recursion-limit <recursion_limit>]
    

    Don't forget that for unpickling serialized model objects their classes must be defined in the top level of an importable module in the unpickling environment.

    Piping is also supported:

    $ cat <pickle_file> | m2cgen --language <language>
    

    FAQ

    Q: Generation fails with RuntimeError: maximum recursion depth exceeded error.

    A: If this error occurs while generating code using an ensemble model, try to reduce the number of trained estimators within that model. Alternatively you can increase the maximum recursion depth with sys.setrecursionlimit(<new_depth>).

    Q: Generation fails with ImportError: No module named <module_name_here> error while transpiling model from a serialized model object.

    A: This error indicates that pickle protocol cannot deserialize model object. For unpickling serialized model objects, it is required that their classes must be defined in the top level of an importable module in the unpickling environment. So installation of package which provided model's class definition should solve the problem.

    About

    Transform ML models into a native code (Java, C, Python, Go, JavaScript, Visual Basic, C#) with zero dependencies

    Resources

    License

    Stars

    Watchers

    Forks

    Packages

    No packages published

    Languages

    • Python 42.2%
    • Java 9.0%
    • PowerShell 7.7%
    • R 7.3%
    • Visual Basic .NET 7.1%
    • Go 6.4%
    • Other 20.3%