This repository provides the official PyTorch implementation of the following paper:
Paper link: SISN-MM'21
- Python 3.7
- PyTorch >= 1.4.0 (1.5.0 is ok)
- numpy
- skimage
- imageio
- matplotlib
- tqdm
Please download FFHQ dataset from here and CelebA dataset from here.
After download all datasets, the folder dataset
should be like this (take FFHQ as an example):
dataset
└── FFHQ
├── 1024X1024
├── HR
└── LR
├── X2
├── X4
└── X8
└── 256X256
├── HR
└── LR
├── X2
├── X4
└── X8
First, you need to set the necessary parameters in the option.py
such as scale, dataset_root, train_val_range, etc.
Training the model on the X4 scale as below:
python train.py --model SISN --scale 4
By default, the trained model will be saved in ./pt
directory.
python test.py --model SISN --scale 4 --pretrain <path_of_pretrained_model> --dataset_root <path_of_input_image> --save_root <path_of_result>
If you find the code helpful in your resarch or work, please cite the following paper.
@inproceedings{lu2021face,
title={Face Hallucination via Split-Attention in Split-Attention Network},
author={Lu, Tao and Wang, Yuanzhi and Zhang, Yanduo and Wang, Yu and Wei, Liu and Wang, Zhongyuan and Jiang, Junjun},
booktitle={Proceedings of the 29th ACM International Conference on Multimedia},
pages={5501--5509},
year={2021}
}