Practical Depth Estimation with Image Segmentation and Serial U-Nets
Depth Estimates on KITTI Validation Data
depth-estimation
| depth_estimation_nunet.py <--- main file
| depth_estimate.png
| inference_timer.py
| kitti.gif
| prediction_comparison.py
| README.md
| requirements.txt
|
+---data_extraction
| pickle_kitti_dataset.py
| pickle_nyu_dataset.py
| save_to_file_nyu.m
|
+---models
| losses.py
| models.py
|
\---utils
augmented_data_generator.py
deep_utils.py
fill_depth_colorization.py
image_utils.py
images_2_video.py
rgb2depth.py
rgb2depth_stream.py
stack_videos.py
git clone https://github.com/mech0ctopus/depth-estimation.git
cd depth-estimation
pip install -r requirements.txt
- Download & extract pre-trained weights from link below. Place in depth-estimation folder.
- Run rgb2depth_stream.
cd depth-estimation
python utils\rgb2depth_stream.py
- Download & extract pre-trained weights from link below. Place in depth-estimation folder.
- Run video_depth_writer.
cd depth-estimation
python utils\video_depth_writer.py
- Download NYU Depth V2 or KITTI images from link below
- (Optional, for NYU Depth V2) Colorize depth images
python utils\fill_depth_colorization.py
- Update training & validation folderpaths
- Verify input shapes are correct (NYU: 480x640, Re-sized KITTI: 192x640)
python depth_estimation_nunet.py
- View Results in Tensorboard.
cd depth-estimation
tensorboard --logdir logs
-
Download Pre-trained Weights (NYU Depth V2, ResNet34 Backbones, 480x640 Images)
-
Download Pre-trained Weights (KITTI, ResNet50 Backbones, 192x640 Images)
Download Pre-processed KITTI RGB and Depth Images (Re-sized and colorized) Training Images (5.5GB)
Note: Raw image data is from the KITTI Raw Dataset (synced and rectified) and the KITTI Depth Prediction Dataset (annotated depth maps).
@conference{vehits20,
author={Kyle J. Cantrell. and Craig D. Miller. and Carlos W. Morato.},
title={Practical Depth Estimation with Image Segmentation and Serial U-Nets},
booktitle={Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,},
year={2020},
pages={406-414},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0009781804060414},
isbn={978-989-758-419-0},
}