Skip to content

Practical Depth Estimation with Image Segmentation and Serial U-Nets

Notifications You must be signed in to change notification settings

mech0ctopus/depth-estimation

Repository files navigation

depth-estimation

Practical Depth Estimation with Image Segmentation and Serial U-Nets

Depth Estimate

Car Depth Estimate

Depth Estimates on KITTI Validation Data

depth-estimation
|   depth_estimation_nunet.py <--- main file
|   depth_estimate.png
|   inference_timer.py
|   kitti.gif
|   prediction_comparison.py
|   README.md
|   requirements.txt
|
+---data_extraction
|       pickle_kitti_dataset.py
|       pickle_nyu_dataset.py
|       save_to_file_nyu.m
|
+---models
|       losses.py
|       models.py
|
\---utils
        augmented_data_generator.py
        deep_utils.py
        fill_depth_colorization.py
        image_utils.py
        images_2_video.py
        rgb2depth.py
        rgb2depth_stream.py
        stack_videos.py

Initial Setup

git clone https://github.com/mech0ctopus/depth-estimation.git
cd depth-estimation
pip install -r requirements.txt

Use Pre-Trained Network on Webcam

  1. Download & extract pre-trained weights from link below. Place in depth-estimation folder.
  2. Run rgb2depth_stream.
cd depth-estimation
python utils\rgb2depth_stream.py

Use Pre-Trained Network on RGB Video

  1. Download & extract pre-trained weights from link below. Place in depth-estimation folder.
  2. Run video_depth_writer.
cd depth-estimation
python utils\video_depth_writer.py

Train Depth Estimation Network

  1. Download NYU Depth V2 or KITTI images from link below
  2. (Optional, for NYU Depth V2) Colorize depth images
python utils\fill_depth_colorization.py
  1. Update training & validation folderpaths
  2. Verify input shapes are correct (NYU: 480x640, Re-sized KITTI: 192x640)
python depth_estimation_nunet.py
  1. View Results in Tensorboard.
cd depth-estimation
tensorboard --logdir logs

Pre-trained Weights

Download Pre-processed KITTI Dataset

Download Pre-processed KITTI RGB and Depth Images (Re-sized and colorized) Training Images (5.5GB)

Note: Raw image data is from the KITTI Raw Dataset (synced and rectified) and the KITTI Depth Prediction Dataset (annotated depth maps).

Datasets

Citation

@conference{vehits20,
author={Kyle J. Cantrell. and Craig D. Miller. and Carlos W. Morato.},
title={Practical Depth Estimation with Image Segmentation and Serial U-Nets},
booktitle={Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems - Volume 1: VEHITS,},
year={2020},
pages={406-414},
publisher={SciTePress},
organization={INSTICC},
doi={10.5220/0009781804060414},
isbn={978-989-758-419-0},
}

About

Practical Depth Estimation with Image Segmentation and Serial U-Nets

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published