Skip to content

Commit

Permalink
[VLM][Core] Fix exceptions on ragged NestedTensors (vllm-project#7974)
Browse files Browse the repository at this point in the history
  • Loading branch information
petersalas authored Aug 29, 2024
1 parent a7f65c2 commit 74d5543
Show file tree
Hide file tree
Showing 3 changed files with 21 additions and 11 deletions.
12 changes: 12 additions & 0 deletions tests/multimodal/test_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -81,3 +81,15 @@ def test_multimodal_input_batch_multiple_batchable_lists():
result,
{"image": torch.stack([torch.stack([a, b]),
torch.stack([c, d])])})


def test_multimodal_input_batch_mixed_stacking_depths():
a = torch.rand([1, 2, 3])
b = torch.rand([1, 3, 3])
c = torch.rand([1, 4, 3])

result = MultiModalInputs.batch([{"image": [a, b]}, {"image": [c]}])
assert_multimodal_inputs_equal(result, {"image": [[a, b], c.unsqueeze(0)]})

result = MultiModalInputs.batch([{"image": [a]}, {"image": [b, c]}])
assert_multimodal_inputs_equal(result, {"image": [a.unsqueeze(0), [b, c]]})
16 changes: 7 additions & 9 deletions vllm/model_executor/models/utils.py
Original file line number Diff line number Diff line change
@@ -1,7 +1,6 @@
from typing import (Dict, Iterable, List, Literal, Optional, Protocol, Tuple,
Union, overload)

import numpy as np
import torch
import torch.nn as nn
from torch.func import functional_call
Expand Down Expand Up @@ -96,12 +95,13 @@ def flatten_bn(

def _flatten_embeddings(embeddings: NestedTensors) -> torch.Tensor:
"""
Recursively concatenates NestedTensors along any heterogeneously sized
dimensions.
Recursively flattens and concatenates NestedTensors on all but the last
dimension.
"""

if isinstance(embeddings, torch.Tensor):
return embeddings
# Flatten all but the last dimension.
return embeddings.flatten(0, -2)

return torch.cat(tuple(_flatten_embeddings(t) for t in embeddings))

Expand Down Expand Up @@ -136,15 +136,13 @@ def merge_multimodal_embeddings(input_ids: torch.Tensor,
assert isinstance(num_expected_tokens, int)

flattened = _flatten_embeddings(multimodal_embeddings)
*dims, embed_dim = flattened.shape
num_multimodal_embeddings = np.prod(dims)
if num_multimodal_embeddings != num_expected_tokens:
if flattened.shape[0] != num_expected_tokens:
expr = _embedding_count_expression(multimodal_embeddings)
raise ValueError(
f"Attempted to assign {expr} = {num_multimodal_embeddings} "
f"Attempted to assign {expr} = {flattened.shape[0]} "
f"multimodal tokens to {num_expected_tokens} placeholders")

inputs_embeds[mask] = flattened.view(num_expected_tokens, embed_dim)
inputs_embeds[mask] = flattened
return inputs_embeds


Expand Down
4 changes: 2 additions & 2 deletions vllm/multimodal/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,8 +54,8 @@ def _try_stack(nested_tensors: NestedTensors) -> NestedTensors:
return nested_tensors

stacked = [MultiModalInputs._try_stack(t) for t in nested_tensors]
if is_list_of(stacked, list):
# Do not stack nested lists
if not is_list_of(stacked, torch.Tensor, check="all"):
# Only tensors (not lists) can be stacked.
return stacked

tensors_ = cast(List[torch.Tensor], stacked)
Expand Down

0 comments on commit 74d5543

Please sign in to comment.