a | b | c | d | e | f | g | h |
---|---|---|---|---|---|---|---|
AAA | DAA | HLT | JNL | LODSB | POP | ROR | XCHG |
AAD | DAS | IMUL | JNLE | LODSW | POPA | SAHF | XLATB |
AAM | DEC | INC | JNO | LOOP | POPF | SAL | XOR |
AAS | DIV | INTO | JNP | LOOPE | PUSH | SAR | |
ADC | IDIV | JA | JNS | LOOPNE | PUSHA | SBB | |
ADD | IN | JB | JNZ | LOOPNZ | PUSHF | SCASB | |
AND | INT | JBE | JO | LOOPZ | RCL | SCASW | |
CALL | IRET | JE | JP | MOV | RCR | SHL | |
CBW | JAE | JGE | JPE | MOVSB | REP | SHR | |
CLD | JC | JLE | JPO | MOVSW | REPE | STC | |
CLI | JCXZ | JNA | JS | MUL | REPNE | STD | |
CMC | JG | JNB | JZ | NEG | REPNZ | STI | |
CMP | JL | JNC | LAHF | NOP | REPZ | STOSB | |
CMPSB | JMP | JNE | LDS | NOT | RET | STOSW | |
CMPSW | JNAE | JNG | LEA | OR | RETF | SUB | |
CWD | JNBE | JNGE | LES | OUT | ROL | TEST |
REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.
SREG: DS, ES, SS, and only as second operand: CS.
memory: [BX], [BX+SI+7], variable, etc...
immediate: 5, -24, 3Fh, 10001101b, etc...
-
When two operands are required for an instruction they are separated by comma. For example:
REG, memory
-
When there are two operands, both operands must have the same size (except shift and rotate instructions). For example:
AL, DL
DX, AX
m1 DB ?
AL, m1
m2 DW ?
AX, m2
- Some instructions allow several operand combinations. For example:
memory, immediate
REG, immediate
memory, REG
REG, SREG
- Some examples contain macros, so it is advisable to use Shift + F8 hot key to Step Over (to make macro code execute at maximum speed set step delay to zero), otherwise emulator will step through each instruction of a macro. Here is an example that uses PRINTN macro:
include 'emu8086.inc'
ORG 100h
MOV AL, 1
MOV BL, 2
PRINTN 'Hello World!' ; macro.
MOV CL, 3
PRINTN 'Welcome!' ; macro.
RET
These marks are used to show the state of the flags:
- 1 - instruction sets this flag to 1.
- 0 - instruction sets this flag to 0.
- r - flag value depends on result of the instruction.
- ? - flag value is undefined (maybe 1 or 0).
Some instructions generate exactly the same machine code, so disassembler may have a problem decoding to your original code. This is especially important for Conditional Jump instructions.
Instruction Operands Description
No operands
ASCII Adjust after Addition.
Corrects result in AH and AL after addition when working with BCD values. It works according to the following
Algorithm:
if low nibble of AL > 9 or AF = 1 then:
- AL = AL + 6
- AH = AH + 1
- AF = 1
- CF = 1 else
- AF = 0
- CF = 0 in both cases: clear the high nibble of AL.
Example:
MOV AX, 15 ; AH = 00, AL = 0Fh
AAA ; AH = 01, AL = 05
RET
C Z S O P A
r ? ? ? ? r
No operands
ASCII Adjust before Division. Prepares two BCD values for division.
Algorithm:
- AL = (AH * 10) + AL
- AH = 0
Example:
MOV AX, 0105h ; AH = 01, AL = 05
AAD ; AH = 00, AL = 0Fh (15)
RET
C Z S O P A
? r r ? r ?
No operands
ASCII Adjust after Multiplication.
Corrects the result of multiplication of two BCD values.
Algorithm:
- AH = AL / 10
- AL = remainder
Example:
MOV AL, 15 ; AL = 0Fh
AAM ; AH = 01, AL = 05
RET
C Z S O P A
? r r ? r ?
No operands
ASCII Adjust after Subtraction.
Corrects result in AH and AL after subtraction when working with BCD values.
Algorithm:
if low nibble of AL > 9 or AF = 1 then:
- AL = AL - 6
- AH = AH - 1
- AF = 1
- CF = 1 else
- AF = 0
- CF = 0 in both cases: clear the high nibble of AL.
Example:
MOV AX, 02FFh ; AH = 02, AL = 0FFh
AAS ; AH = 01, AL = 09
RET
C Z S O P A
r ? ? ? ? r
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Add with Carry.
Algorithm:
operand1 = operand1 + operand2 + CF
Example:
STC ; set CF = 1
MOV AL, 5 ; AL = 5
ADC AL, 1 ; AL = 7
RET
C Z S O P A
r r r r r r
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Add.
Algorithm:
operand1 = operand1 + operand2
Example:
MOV AL, 5 ; AL = 5
ADD AL, -3 ; AL = 2
RET
C Z S O P A
r r r r r r
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Logical AND between all bits of two operands. Result is stored in operand1.
These rules apply:
- 1 AND 1 = 1
- 1 AND 0 = 0
- 0 AND 1 = 0
- 0 AND 0 = 0
Example:
MOV AL, 'a' ; AL = 01100001b
AND AL, 11011111b ; AL = 01000001b ('A')
RET
C Z S O P
0 r r 0 r
- procedure name
- label
- 4-byte address
Transfers control to procedure, return address is (IP) is pushed to stack.
4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset (this is a far call, so CS is also pushed to stack).
Example:
ORG 100h ; for COM file.
CALL p1
ADD AX, 1
RET ; return to OS.
p1 PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
p1 ENDP
C Z S O P A
unchanged
No operands
Convert byte into word.
Algorithm:
if high bit of AL = 1 then:
- AH = 255 (0FFh) else
- AH = 0
Example:
MOV AX, 0 ; AH = 0, AL = 0
MOV AL, -5 ; AX = 000FBh (251)
CBW ; AX = 0FFFBh (-5)
RET
C Z S O P A
unchanged
No operands
Clear Carry flag.
Algorithm:
CF = 0
C
0
No operands
Clear Direction flag. SI and DI will be incremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.
Algorithm:
DF = 0
D
0
No operands
Clear Interrupt enable flag. This disables hardware interrupts.
Algorithm:
IF = 0
I 0
No operands
Complement Carry flag. Inverts value of CF.
Algorithm:
if CF = 1 then CF = 0 if CF = 0 then CF = 1
C
r
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Compare.
Algorithm:
operand1 - operand2 result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result.
Example:
MOV AL, 5
MOV BL, 5
CMP AL, BL ; AL = 5, ZF = 1 (so equal!)
RET
C Z S O P A
r r r r r r
No operands
Compare bytes: ES:[DI] from DS:[SI].
Algorithm:
- DS:[SI] - ES:[DI]
- set flags according to result: OF, SF, ZF, AF, PF, CF
- if DF = 0 then
- SI = SI + 1
- DI = DI + 1 else
- SI = SI - 1
- DI = DI - 1
C Z S O P A
r r r r r r
No operands
Compare words: ES:[DI] from DS:[SI].
Algorithm:
- DS:[SI] - ES:[DI]
- set flags according to result: OF, SF, ZF, AF, PF, CF
- if DF = 0 then
- SI = SI + 2
- DI = DI + 2 else
- SI = SI - 2
- DI = DI - 2
C Z S O P A
r r r r r r
No operands
Convert Word to Double word.
Algorithm:
if high bit of AX = 1 then:
- DX = 65535 (0FFFFh) else
- DX = 0
Example:
MOV DX, 0 ; DX = 0
MOV AX, 0 ; AX = 0
MOV AX, -5 ; DX AX = 00000h:0FFFBh
CWD ; DX AX = 0FFFFh:0FFFBh
RET
C Z S O P A
unchanged
No operands
Decimal adjust After Addition. Corrects the result of addition of two packed BCD values.
Algorithm:
if low nibble of AL > 9 or AF = 1 then:
- AL = AL + 6
- AF = 1 if AL > 9Fh or CF = 1 then:
- AL = AL + 60h
- CF = 1
Example:
MOV AL, 0Fh ; AL = 0Fh (15)
DAA ; AL = 15h
RET
C Z S O P A
r r r r r r
No operands
Decimal adjust After Subtraction. Corrects the result of subtraction of two packed BCD values.
Algorithm:
if low nibble of AL > 9 or AF = 1 then:
- AL = AL - 6
- AF = 1 if AL > 9Fh or CF = 1 then:
- AL = AL - 60h
- CF = 1
Example:
MOV AL, 0FFh ; AL = 0FFh (-1)
DAS ; AL = 99h, CF = 1
RET
C Z S O P A
r r r r r r
- REG
- memory
Decrement.
Algorithm:
operand = operand - 1
Example:
MOV AL, 255 ; AL = 0FFh (255 or -1)
DEC AL ; AL = 0FEh (254 or -2)
RET
CF - unchanged!
Z S O P A
r r r r r
- REG
- memory
Unsigned divide.
Algorithm:
when operand is a byte: AL = AX / operand AH = remainder (modulus) when operand is a word: AX = (DX AX) / operand DX = remainder (modulus)
Example:
MOV AX, 203 ; AX = 00CBh
MOV BL, 4
DIV BL ; AL = 50 (32h), AH = 3
RET
C Z S O P A
? ? ? ? ? ?
No operands
Halt the System.
Example:
MOV AX, 5
HLT
C Z S O P A
unchanged
- REG
- memory
Signed divide.
Algorithm:
when operand is a byte: AL = AX / operand AH = remainder (modulus) when operand is a word: AX = (DX AX) / operand DX = remainder (modulus)
Example:
MOV AX, -203 ; AX = 0FF35h
MOV BL, 4
IDIV BL ; AL = -50 (0CEh), AH = -3 (0FDh)
RET
C Z S O P A
? ? ? ? ? ?
- REG
- memory
Signed multiply.
Algorithm:
when operand is a byte: AX = AL * operand. when operand is a word: (DX AX) = AX * operand.
Example:
MOV AL, -2
MOV BL, -4
IMUL BL ; AX = 8
RET
CF=OF=0 when result fits into operand of IMUL.
C Z S O P A
r ? ? r ? ?
AL, im.byte AL, DX AX, im.byte AX, DX
Input from port into AL or AX. Second operand is a port number. If required to access port number over 255 - DX register should be used.
Example:
IN AX, 4 ; get status of traffic lights.
IN AL, 7 ; get status of stepper-motor.
C Z S O P A
unchanged
- REG
- memory
Increment.
Algorithm:
operand = operand + 1
Example:
MOV AL, 4
INC AL ; AL = 5
RET
CF - unchanged!
Z S O P A
r r r r r
- immediate byte
Interrupt numbered by immediate byte (0..255).
Algorithm:
Push to stack:
- flags register
- CS
- IP
- IF = 0
- Transfer control to interrupt procedure
Example:
MOV AH, 0Eh ; teletype.
MOV AL, 'A'
RET
C Z S O P A I
unchanged 0
No operands
Interrupt 4 if Overflow flag is 1.
Algorithm:
if OF = 1 then INT 4
Example:
; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
INTO ; process error.
RET
No operands
Interrupt Return.
Algorithm:
Pop from stack:
- IP
- CS
- flags register
C Z S O P A
popped
Short Jump if first operand is Above second operand (as set by CMP instruction). Unsigned.
Algorithm:
if (CF = 0) and (ZF = 0) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 250
CMP AL, 5
JA label1
PRINT 'AL is not above 5'
JMP exit
label1:
PRINT 'AL is above 5'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Above or Equal to second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JAE label1
PRINT 'AL is not above or equal to 5'
JMP exit
label1:
PRINT 'AL is above or equal to 5'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Below second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 1
CMP AL, 5
JB label1
PRINT 'AL is not below 5'
JMP exit
label1:
PRINT 'AL is below 5'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Below or Equal to second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 or ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JBE label1
PRINT 'AL is not below or equal to 5'
JMP exit
label1:
PRINT 'AL is below or equal to 5'
exit:
RET
C Z S O P A
unchanged
Short Jump if Carry flag is set to 1.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 255
ADD AL, 1
JC label1
PRINT 'no carry.'
JMP exit
label1:
PRINT 'has carry.'
exit:
RET
C Z S O P A
unchanged
Short Jump if CX register is 0.
Algorithm:
if CX = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV CX, 0
JCXZ label1
PRINT 'CX is not zero.'
JMP exit
label1:
PRINT 'CX is zero.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Equal to second operand (as set by CMP instruction). Signed/Unsigned.
Algorithm:
if ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JE label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Greater then second operand (as set by CMP instruction). Signed.
Algorithm:
if (ZF = 0) and (SF = OF) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, -5
JG label1
PRINT 'AL is not greater -5.'
JMP exit
label1:
PRINT 'AL is greater -5.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Greater or Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if SF = OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -5
JGE label1
PRINT 'AL < -5'
JMP exit
label1:
PRINT 'AL >= -5'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Less then second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, -2
CMP AL, 5
JL label1
PRINT 'AL >= 5.'
JMP exit
label1:
PRINT 'AL < 5.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Less or Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF or ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, -2
CMP AL, 5
JLE label1
PRINT 'AL > 5.'
JMP exit
label1:
PRINT 'AL <= 5.'
exit:
RET
C Z S O P A
unchanged
4-byte address
Unconditional Jump. Transfers control to another part of the program. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset.
Algorithm: always jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
JMP label1 ; jump over 2 lines!
PRINT 'Not Jumped!'
MOV AL, 0
label1:
PRINT 'Got Here!'
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Above second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 or ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 5
JNA label1
PRINT 'AL is above 5.'
JMP exit
label1:
PRINT 'AL is not above 5.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Above and Not Equal to second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 5
JNAE label1
PRINT 'AL >= 5.'
JMP exit
label1:
PRINT 'AL < 5.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Below second operand (as set by CMP instruction). Unsigned.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 7
CMP AL, 5
JNB label1
PRINT 'AL < 5.'
JMP exit
label1:
PRINT 'AL >= 5.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Below and Not Equal to second operand (as set by CMP instruction). Unsigned.
Algorithm:
if (CF = 0) and (ZF = 0) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 7
CMP AL, 5
JNBE label1
PRINT 'AL <= 5.'
JMP exit
label1:
PRINT 'AL > 5.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Carry flag is set to 0.
Algorithm:
if CF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
ADD AL, 3
JNC label1
PRINT 'has carry.'
JMP exit
label1:
PRINT 'no carry.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Equal to second operand (as set by CMP instruction). Signed/Unsigned.
Algorithm:
if ZF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNE label1
PRINT 'AL = 3.'
JMP exit
label1:
PRINT 'Al <> 3.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Greater then second operand (as set by CMP instruction). Signed.
Algorithm:
if (ZF = 1) and (SF <> OF) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNG label1
PRINT 'AL > 3.'
JMP exit
label1:
PRINT 'Al <= 3.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Greater and Not Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if SF <> OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, 3
JNGE label1
PRINT 'AL >= 3.'
JMP exit
label1:
PRINT 'Al < 3.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Less then second operand (as set by CMP instruction). Signed.
Algorithm:
if SF = OF then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNL label1
PRINT 'AL < -3.'
JMP exit
label1:
PRINT 'Al >= -3.'
exit:
RET
C Z S O P A
unchanged
Short Jump if first operand is Not Less and Not Equal to second operand (as set by CMP instruction). Signed.
Algorithm:
if (SF = OF) and (ZF = 0) then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNLE label1
PRINT 'AL <= -3.'
JMP exit
label1:
PRINT 'Al > -3.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Not Overflow.
Algorithm:
if OF = 0 then jump
Example:
; -5 - 2 = -7 (inside -128..127)
; the result of SUB is correct,
; so OF = 0:
include 'emu8086.inc'
ORG 100h
MOV AL, -5
SUB AL, 2 ; AL = 0F9h (-7)
JNO label1
PRINT 'overflow!'
JMP exit
label1:
PRINT 'no overflow.'
exit:
RET
C Z S O P A
unchanged
Short Jump if No Parity (odd).
Only 8 low bits of result are checked.
Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if PF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNP label1
PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Not Signed (if positive).
Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if SF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNS label1
PRINT 'signed.'
JMP exit
label1:
PRINT 'not signed.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Not Zero (not equal).
Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if ZF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNZ label1
PRINT 'zero.'
JMP exit
label1:
PRINT 'not zero.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Overflow.
Algorithm:
if OF = 1 then jump
Example:
; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
include 'emu8086.inc'
org 100h
MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
JO label1
PRINT 'no overflow.'
JMP exit
label1:
PRINT 'overflow!'
exit:
RET
C Z S O P A
unchanged
Short Jump if Parity (even). Only 8 low bits of result are checked.
Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if PF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0 ; just set flags.
JP label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Parity Even. Only 8 low bits of result are checked.
Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if PF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0 ; just set flags.
JPE label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Parity Odd. Only 8 low bits of result are checked.
Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if PF = 0 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JPO label1
PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Signed (if negative).
Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if SF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 10000000b ; AL = -128
OR AL, 0 ; just set flags.
JS label1
PRINT 'not signed.'
JMP exit
label1:
PRINT 'signed.'
exit:
RET
C Z S O P A
unchanged
Short Jump if Zero (equal).
Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.
Algorithm:
if ZF = 1 then jump
Example:
include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JZ label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
C Z S O P A
unchanged
No operands
Load AH from 8 low bits of Flags register.
Algorithm:
AH = flags register
AH bit: 7 6 5 4 3 2 1 0
[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
C Z S O P A
unchanged
- REG, memory
Load memory double word into word register and DS.
Algorithm:
- REG = first word
- DS = second word
Example:
ORG 100h
LDS AX, m
RET
m DW 1234h
DW 5678h
END
AX is set to 1234h, DS is set to 5678h.
C Z S O P A
unchanged
- REG, memory
- Load Effective Address.
Algorithm:
- REG = address of memory (offset)
Example:
MOV BX, 35h
MOV DI, 12h
LEA SI, [BX+DI] ; SI = 35h + 12h = 47h
Note: The integrated 8086 assembler automatically replaces LEA with a more efficient MOV where possible. For example:
org 100h
LEA AX, m ; AX = offset of m
RET
m dw 1234h
END
C Z S O P A
unchanged
- REG, memory
Load memory double word into word register and ES.
Algorithm:
- REG = first word
- ES = second word
Example:
ORG 100h
LES AX, m
RET
m DW 1234h
DW 5678h
END
AX is set to 1234h, ES is set to 5678h.
C Z S O P A
unchanged
No operands
Load byte at DS:[SI] into AL. Update SI.
Algorithm:
- AL = DS:[SI]
- if DF = 0 then
- SI = SI + 1 else
- SI = SI - 1
Example:
ORG 100h
LEA SI, a1
MOV CX, 5
MOV AH, 0Eh
m: LODSB
INT 10h
LOOP m
RET
a1 DB 'H', 'e', 'l', 'l', 'o'
C Z S O P A
unchanged
No operands
Load word at DS:[SI] into AX. Update SI.
Algorithm:
- AX = DS:[SI]
- if DF = 0 then
- SI = SI + 2 else
- SI = SI - 2
Example:
ORG 100h
LEA SI, a1
MOV CX, 5
REP LODSW ; finally there will be 555h in AX.
RET
a1 dw 111h, 222h, 333h, 444h, 555h
C Z S O P A
unchanged
Decrease CX, jump to label if CX not zero.
Algorithm:
- CX = CX - 1
- if CX <> 0 then
- jump else
- no jump, continue
Example:
include 'emu8086.inc'
ORG 100h
MOV CX, 5
label1:
PRINTN 'loop!'
LOOP label1
RET
C Z S O P A
unchanged
Decrease CX, jump to label if CX not zero and Equal (ZF = 1).
Algorithm:
- CX = CX - 1
- if (CX <> 0) and (ZF = 1) then
- jump else
- no jump, continue
Example:
; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.
include 'emu8086.inc'
ORG 100h
MOV AX, 0
MOV CX, 5
label1:
PUTC '-'
ADD AX, 100
CMP AH, 0
LOOPE label1
RET
C Z S O P A
unchanged
Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0).
Algorithm:
- CX = CX - 1
- if (CX <> 0) and (ZF = 0) then
- jump else
- no jump, continue
Example:
; Loop until '7' is found,
; or 5 times.
include 'emu8086.inc'
ORG 100h
MOV SI, 0
MOV CX, 5
label1:
PUTC '-'
MOV AL, v1[SI]
INC SI ; next byte (SI=SI+1).
CMP AL, 7
LOOPNE label1
RET
v1 db 9, 8, 7, 6, 5
C Z S O P A
unchanged
Decrease CX, jump to label if CX not zero and ZF = 0.
Algorithm:
- CX = CX - 1
- if (CX <> 0) and (ZF = 0) then
- jump else
- no jump, continue
Example:
; Loop until '7' is found,
; or 5 times.
include 'emu8086.inc'
ORG 100h
MOV SI, 0
MOV CX, 5
label1:
PUTC '-'
MOV AL, v1[SI]
INC SI ; next byte (SI=SI+1).
CMP AL, 7
LOOPNZ label1
RET
v1 db 9, 8, 7, 6, 5
C Z S O P A
unchanged
Decrease CX, jump to label if CX not zero and ZF = 1.
Algorithm:
- CX = CX - 1
- if (CX <> 0) and (ZF = 1) then
- jump else
- no jump, continue
Example:
; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.
include 'emu8086.inc'
ORG 100h
MOV AX, 0
MOV CX, 5
label1:
PUTC '-'
ADD AX, 100
CMP AH, 0
LOOPZ label1
RET
C Z S O P A
unchanged
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
- SREG, memory
- memory, SREG
- REG, SREG
- SREG, REG
Copy operand2 to operand1.
The MOV instruction cannot:
- set the value of the CS and IP registers.
- copy value of one segment register to another segment register (should copy to general register first).
- copy immediate value to segment register (should copy to general register first).
Algorithm:
operand1 = operand2
Example:
ORG 100h
MOV AX, 0B800h ; set AX = B800h (VGA memory).
MOV DS, AX ; copy value of AX to DS.
MOV CL, 'A' ; CL = 41h (ASCII code).
MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh ; BX = position on screen.
MOV [BX], CX ; w.[0B800h:015Eh] = CX.
RET ; returns to operating system.
C Z S O P A
unchanged
No operands
Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.
Algorithm:
- ES:[DI] = DS:[SI]
- if DF = 0 then
- SI = SI + 1
- DI = DI + 1 else
- SI = SI - 1
- DI = DI - 1
Example:
ORG 100h
CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSB
RET
a1 DB 1,2,3,4,5
a2 DB 5 DUP(0)
C Z S O P A
unchanged
No operands
Copy word at DS:[SI] to ES:[DI]. Update SI and DI.
Algorithm:
- ES:[DI] = DS:[SI]
- if DF = 0 then
- SI = SI + 2
- DI = DI + 2 else
- SI = SI - 2
- DI = DI - 2
Example:
ORG 100h
CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSW
RET
a1 DW 1,2,3,4,5
a2 DW 5 DUP(0)
C Z S O P A
unchanged
REG memory
Unsigned multiply.
Algorithm:
when operand is a byte:
- AX = AL * operand. when operand is a word:
- (DX AX) = AX * operand.
Example:
MOV AL, 200 ; AL = 0C8h
MOV BL, 4
MUL BL ; AX = 0320h (800)
RET
CF=OF=0 when high section of the result is zero.
C Z S O P A
r ? ? r ? ?
- REG
- memory
Negate. Makes operand negative (two's complement).
Algorithm:
- Invert all bits of the operand
- Add 1 to inverted operand
Example:
MOV AL, 5 ; AL = 05h
NEG AL ; AL = 0FBh (-5)
NEG AL ; AL = 05h (5)
RET
C Z S O P A
r r r r r r
No operands
No Operation.
Algorithm:
- Do nothing
Example:
; do nothing, 3 times:
NOP
NOP
NOP
RET
C Z S O P A
unchanged
- REG
- memory
Invert each bit of the operand.
Algorithm:
- if bit is 1 turn it to 0.
- if bit is 0 turn it to 1.
Example:
MOV AL, 00011011b
NOT AL ; AL = 11100100b
RET
C Z S O P A
unchanged
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Logical OR between all bits of two operands. Result is stored in first operand. These rules apply: 1 OR 1 = 1 1 OR 0 = 1 0 OR 1 = 1 0 OR 0 = 0
Example:
MOV AL, 'A' ; AL = 01000001b
OR AL, 00100000b ; AL = 01100001b ('a')
RET
C Z S O P A
0 r r 0 r ?
- im.byte, AL
- im.byte, AX
- DX, AL
- DX, AX
Output from AL or AX to port. First operand is a port number. If required to access port number over 255 - DX register should be used.
Example:
memory, REG
REG, REG
memory, immediate
REG, immediate
MOV AX, 0FFFh ; Turn on all
OUT 4, AX ; traffic lights.
MOV AL, 100b ; Turn on the third
OUT 7, AL ; magnet of the stepper-motor.
C Z S O P A
unchanged
- REG
- SREG
- memory Get 16 bit value from the stack.
Algorithm:
- operand = SS:[SP] (top of the stack)
- SP = SP + 2
Example:
MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
C Z S O P A
unchanged
No operands
Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX from the stack. SP value is ignored, it is Popped but not set to SP register). Note: this instruction works only on 80186 CPU and later!
Algorithm:
- POP DI
- POP SI
- POP BP
- POP xx (SP value ignored)
- POP BX
- POP DX
- POP CX
- POP AX
C Z S O P A
unchanged
No operands
Get flags register from the stack.
Algorithm:
- flags = SS:[SP] (top of the stack)
- SP = SP + 2
C Z S O P A
popped
- REG
- SREG
- memory
- immediate
Store 16 bit value in the stack. Note: PUSH immediate works only on 80186 CPU and later!
Algorithm:
- SP = SP - 2
- SS:[SP] (top of the stack) = operand
Example:
MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
C Z S O P A
unchanged
No operands
Push all general purpose registers AX, CX, DX, BX, SP, BP, SI, DI in the stack. Original value of SP register (before PUSHA) is used. Note: this instruction works only on 80186 CPU and later!
Algorithm:
- PUSH AX
- PUSH CX
- PUSH DX
- PUSH BX
- PUSH SP
- PUSH BP
- PUSH SI
- PUSH DI
C Z S O P A
unchanged
No operands
Store flags register in the stack.
Algorithm:
- SP = SP - 2
- SS:[SP] (top of the stack) = flags
C Z S O P A
unchanged
- memory, immediate
- REG, immediate
- memory, CL
- REG, CL
Rotate operand1 left through Carry Flag.
The number of rotates is set by operand2.
When immediate is greater then 1, assembler generates several RCL xx, 1 instructions because 8086 has machine code only for this instruction (the same principle works for all other shift/rotate instructions).
Algorithm:
shift all bits left, the bit that goes off is set to CF and previous value of CF is inserted to the right-most position.
Example:
STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCL AL, 1 ; AL = 00111001b, CF=0.
RET
OF=0 if first operand keeps original sign.
C O
r r
- memory, immediate
- REG, immediate
- memory, CL
- REG, CL
Rotate operand1 right through Carry Flag. The number of rotates is set by operand2.
Algorithm:
shift all bits right, the bit that goes off is set to CF and previous value of CF is inserted to the leftmost position.
Example:
STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCR AL, 1 ; AL = 10001110b, CF=0.
RET
OF=0 if first operand keeps original sign.
C O
r r
Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX times.
Algorithm:
check_cx: if CX <> 0 then
- do following chain instruction
- CX = CX - 1
- go back to check_cx else
- exit from REP cycle
Z
r
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Equal), maximum CX times.
Algorithm:
check_cx: if CX <> 0 then
- do following chain instruction
- CX = CX - 1
- if ZF = 1 then:
- go back to check_cx else
- exit from REPE cycle else
- exit from REPE cycle
Z
r
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Equal), maximum CX times.
Algorithm:
check_cx: if CX <> 0 then
- do following chain instruction
- CX = CX - 1
- if ZF = 0 then:
- go back to check_cx else
- exit from REPNE cycle else
- exit from REPNE cycle
Z
r
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Zero), maximum CX times.
Algorithm:
check_cx: if CX <> 0 then
- do following chain instruction
- CX = CX - 1
- if ZF = 0 then:
- go back to check_cx else
- exit from REPNZ cycle else
- exit from REPNZ cycle
Z
r
Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Zero), maximum CX times.
Algorithm:
check_cx: if CX <> 0 then
- do following chain instruction
- CX = CX - 1
- if ZF = 1 then:
- go back to check_cx else
- exit from REPZ cycle else
- exit from REPZ cycle
Z
r
- No operands
- or even immediate
Return from near procedure.
Algorithm:
- Pop from stack:
- IP
- if immediate operand is present: SP = SP + operand
Example:
ORG 100h ; for COM file.
CALL p1
ADD AX, 1
RET ; return to OS.
p1 PROC ; procedure declaration.
MOV AX, 1234h
RET ; return to caller.
p1 ENDP
C Z S O P A
unchanged
- No operands
- or even immediate
Return from Far procedure.
Algorithm:
- Pop from stack:
- IP
- CS
- if immediate operand is present: SP = SP + operand
C Z S O P A
unchanged
- memory, immediate
- REG, immediate
- memory, CL
- REG, CL
Rotate operand1 left. The number of rotates is set by operand2.
Algorithm:
shift all bits left, the bit that goes off is set to CF and the same bit is inserted to the right-most position.
Example:
MOV AL, 1Ch ; AL = 00011100b
ROL AL, 1 ; AL = 00111000b, CF=0.
RET
OF=0 if first operand keeps original sign.
C O
r r
- memory, immediate
- REG, immediate
- memory, CL
- REG, CL
Rotate operand1 right. The number of rotates is set by operand2.
Algorithm:
shift all bits right, the bit that goes off is set to CF and the same bit is inserted to the left-most position.
Example:
MOV AL, 1Ch ; AL = 00011100b
ROR AL, 1 ; AL = 00001110b, CF=0.
RET
OF=0 if first operand keeps original sign.
C O
r r
No operands
Store AH register into low 8 bits of Flags register.
Algorithm:
flags register = AH
AH bit: 7 6 5 4 3 2 1 0
[SF] [ZF] [0] [AF] [0] [PF] [1] [CF]
bits 1, 3, 5 are reserved.
C Z S O P A
r r r r r r
- memory, immediate
- REG, immediate
- memory, CL
- REG, CL
Shift Arithmetic operand1 Left. The number of shifts is set by operand2.
Algorithm:
- Shift all bits left, the bit that goes off is set to CF.
- Zero bit is inserted to the right-most position.
Example:
MOV AL, 0E0h ; AL = 11100000b
SAL AL, 1 ; AL = 11000000b, CF=1.
RET
OF=0 if first operand keeps original sign.
C O
r r
- memory, immediate
- REG, immediate
- memory, CL
- REG, CL
Shift Arithmetic operand1 Right. The number of shifts is set by operand2.
Algorithm:
- Shift all bits right, the bit that goes off is set to CF.
- The sign bit that is inserted to the left-most position has the same value as before shift.
Example:
MOV AL, 0E0h ; AL = 11100000b
SAR AL, 1 ; AL = 11110000b, CF=0.
MOV BL, 4Ch ; BL = 01001100b
SAR BL, 1 ; BL = 00100110b, CF=0.
RET
OF=0 if first operand keeps original sign.
C O
r r
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Subtract with Borrow.
Algorithm:
operand1 = operand1 - operand2 - CF
Example:
STC
MOV AL, 5
SBB AL, 3 ; AL = 5 - 3 - 1 = 1
RET
C Z S O P A
r r r r r r
No operands
Compare bytes: AL from ES:[DI].
Algorithm:
-
AL - ES:[DI]
-
set flags according to result: OF, SF, ZF, AF, PF, CF
-
if DF = 0 then
- DI = DI + 1 else
- DI = DI - 1
C Z S O P A r r r r r r
### SCASW
No operands
Compare words: AX from ES:[DI].
Algorithm:
* AX - ES:[DI]
* set flags according to result:
OF, SF, ZF, AF, PF, CF
* if DF = 0 then
* DI = DI + 2
else
* DI = DI - 2
C Z S O P A r r r r r r
### SHL
* memory, immediate
* REG, immediate
* memory, CL
* REG, CL
Shift operand1 Left. The number of shifts is set by operand2.
Algorithm:
* Shift all bits left, the bit that goes off is set to CF.
* Zero bit is inserted to the right-most position.
Example:
```nasm
MOV AL, 11100000b
SHL AL, 1 ; AL = 11000000b, CF=1.
RET
OF=0 if first operand keeps original sign.
C O
r r
- memory, immediate
- REG, immediate
- memory, CL
- REG, CL
Shift operand1 Right. The number of shifts is set by operand2.
Algorithm:
- Shift all bits right, the bit that goes off is set to CF.
- Zero bit is inserted to the left-most position.
Example:
MOV AL, 00000111b
SHR AL, 1 ; AL = 00000011b, CF=1.
RET
OF=0 if first operand keeps original sign.
C O
r r
No operands
Set Carry flag.
Algorithm:
CF = 1
C
1
No operands
Set Direction flag. SI and DI will be decremented by chain instructions:
CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.
Algorithm:
DF = 1
D
1
No operands
Set Interrupt enable flag. This enables hardware interrupts.
Algorithm:
IF = 1
I 1
No operands
Store byte in AL into ES:[DI]. Update DI.
Algorithm:
- ES:[DI] = AL
- if DF = 0 then
- DI = DI + 1 else
- DI = DI - 1
Example:
ORG 100h
LEA DI, a1
MOV AL, 12h
MOV CX, 5
REP STOSB
RET
a1 DB 5 dup(0)
C Z S O P A
unchanged
No operands
Store word in AX into ES:[DI]. Update DI.
Algorithm:
- ES:[DI] = AX
- if DF = 0 then
- DI = DI + 2 else
- DI = DI - 2
Example:
ORG 100h
LEA DI, a1
MOV AX, 1234h
MOV CX, 5
REP STOSW
RET
a1 DW 5 dup(0)
C Z S O P A
unchanged
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Subtract.
Algorithm:
operand1 = operand1 - operand2
Example:
MOV AL, 5
SUB AL, 1 ; AL = 4
RET
C Z S O P A
r r r r r r
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Logical AND between all bits of two operands for flags only.
These flags are effected: ZF, SF, PF.
Result is not stored anywhere.
These rules apply:
- 1 AND 1 = 1
- 1 AND 0 = 0
- 0 AND 1 = 0
- 0 AND 0 = 0
Example:
MOV AL, 00000101b
TEST AL, 1 ; ZF = 0.
TEST AL, 10b ; ZF = 1.
RET
C Z S O P
0 r r 0 r
- REG, memory
- memory, REG
- REG, REG
Exchange values of two operands.
Algorithm:
operand1 < - > operand2
Example:
MOV AL, 5
MOV AH, 2
XCHG AL, AH ; AL = 2, AH = 5
XCHG AL, AH ; AL = 5, AH = 2
RET
C Z S O P A
unchanged
No operands
Translate byte from table.
Copy value of memory byte at
DS:[BX + unsigned AL] to AL register.
Algorithm:
AL = DS:[BX + unsigned AL]
Example:
ORG 100h
LEA BX, dat
MOV AL, 2
XLATB ; AL = 33h
RET
dat DB 11h, 22h, 33h, 44h, 55h
C Z S O P A
unchanged
- REG, memory
- memory, REG
- REG, REG
- memory, immediate
- REG, immediate
Logical XOR (Exclusive OR) between all bits of two operands.
Result is stored in first operand.
These rules apply: 1 XOR 1 = 0 1 XOR 0 = 1 0 XOR 1 = 1 0 XOR 0 = 0
Example:
MOV AL, 00000111b
XOR AL, 00000010b ; AL = 00000101b
RET
C Z S O P A
0 r r 0 r ?
Converted into GFM from http://www.gabrielececchetti.it/Teaching/CalcolatoriElettronici/Docs/i8086_instruction_set.pdf