Skip to content

michaelsergio/nasm-instruction-set

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

13 Commits
 
 
 
 

Repository files navigation

Complete 8086 instruction set

Quick reference:

a b c d e f g h
AAA DAA HLT JNL LODSB POP ROR XCHG
AAD DAS IMUL JNLE LODSW POPA SAHF XLATB
AAM DEC INC JNO LOOP POPF SAL XOR
AAS DIV INTO JNP LOOPE PUSH SAR
ADC IDIV JA JNS LOOPNE PUSHA SBB
ADD IN JB JNZ LOOPNZ PUSHF SCASB
AND INT JBE JO LOOPZ RCL SCASW
CALL IRET JE JP MOV RCR SHL
CBW JAE JGE JPE MOVSB REP SHR
CLD JC JLE JPO MOVSW REPE STC
CLI JCXZ JNA JS MUL REPNE STD
CMC JG JNB JZ NEG REPNZ STI
CMP JL JNC LAHF NOP REPZ STOSB
CMPSB JMP JNE LDS NOT RET STOSW
CMPSW JNAE JNG LEA OR RETF SUB
CWD JNBE JNGE LES OUT ROL TEST

Operand types:

REG: AX, BX, CX, DX, AH, AL, BL, BH, CH, CL, DH, DL, DI, SI, BP, SP.

SREG: DS, ES, SS, and only as second operand: CS.

memory: [BX], [BX+SI+7], variable, etc...

immediate: 5, -24, 3Fh, 10001101b, etc...

Notes:

  • When two operands are required for an instruction they are separated by comma. For example: REG, memory

  • When there are two operands, both operands must have the same size (except shift and rotate instructions). For example:

AL, DL
DX, AX
m1 DB ?
AL, m1
m2 DW ?
AX, m2
  • Some instructions allow several operand combinations. For example:
memory, immediate
REG, immediate
memory, REG
REG, SREG
  • Some examples contain macros, so it is advisable to use Shift + F8 hot key to Step Over (to make macro code execute at maximum speed set step delay to zero), otherwise emulator will step through each instruction of a macro. Here is an example that uses PRINTN macro:
include 'emu8086.inc'
ORG 100h
MOV AL, 1
MOV BL, 2
PRINTN 'Hello World!' ; macro.
MOV CL, 3
PRINTN 'Welcome!'     ; macro.
RET

These marks are used to show the state of the flags:

  • 1 - instruction sets this flag to 1.
  • 0 - instruction sets this flag to 0.
  • r - flag value depends on result of the instruction.
  • ? - flag value is undefined (maybe 1 or 0).

Some instructions generate exactly the same machine code, so disassembler may have a problem decoding to your original code. This is especially important for Conditional Jump instructions.


Instructions in alphabetical order:

Instruction Operands Description

AAA

No operands

ASCII Adjust after Addition.

Corrects result in AH and AL after addition when working with BCD values. It works according to the following

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

  • AL = AL + 6
  • AH = AH + 1
  • AF = 1
  • CF = 1 else
  • AF = 0
  • CF = 0 in both cases: clear the high nibble of AL.

Example:

MOV AX, 15 ; AH = 00, AL = 0Fh
AAA ; AH = 01, AL = 05
RET
C Z S O P A
r ? ? ? ? r

AAD

No operands

ASCII Adjust before Division. Prepares two BCD values for division.

Algorithm:

  • AL = (AH * 10) + AL
  • AH = 0

Example:

MOV AX, 0105h ; AH = 01, AL = 05
AAD ; AH = 00, AL = 0Fh (15)
RET
C Z S O P A
? r r ? r ?

AAM

No operands

ASCII Adjust after Multiplication.

Corrects the result of multiplication of two BCD values.

Algorithm:

  • AH = AL / 10
  • AL = remainder

Example:

MOV AL, 15 ; AL = 0Fh
AAM ; AH = 01, AL = 05
RET
C Z S O P A
? r r ? r ?

AAS

No operands

ASCII Adjust after Subtraction.

Corrects result in AH and AL after subtraction when working with BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

  • AL = AL - 6
  • AH = AH - 1
  • AF = 1
  • CF = 1 else
  • AF = 0
  • CF = 0 in both cases: clear the high nibble of AL.

Example:

MOV AX, 02FFh ; AH = 02, AL = 0FFh
AAS ; AH = 01, AL = 09
RET
C Z S O P A
r ? ? ? ? r

ADC

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Add with Carry.

Algorithm:

operand1 = operand1 + operand2 + CF

Example:

STC ; set CF = 1
MOV AL, 5 ; AL = 5
ADC AL, 1 ; AL = 7
RET
C Z S O P A
r r r r r r

ADD

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Add.

Algorithm:

operand1 = operand1 + operand2

Example:

MOV AL, 5 ; AL = 5
ADD AL, -3 ; AL = 2
RET
C Z S O P A
r r r r r r

AND

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Logical AND between all bits of two operands. Result is stored in operand1.

These rules apply:

  • 1 AND 1 = 1
  • 1 AND 0 = 0
  • 0 AND 1 = 0
  • 0 AND 0 = 0

Example:

MOV AL, 'a' ; AL = 01100001b
AND AL, 11011111b ; AL = 01000001b ('A')
RET
C Z S O P
0 r r 0 r

CALL

  • procedure name
  • label
  • 4-byte address

Transfers control to procedure, return address is (IP) is pushed to stack.

4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset (this is a far call, so CS is also pushed to stack).

Example:

ORG 100h ; for COM file.
CALL p1
ADD AX, 1
RET ; return to OS.
p1 PROC ; procedure declaration.
    MOV AX, 1234h
    RET ; return to caller.
p1 ENDP
C Z S O P A
unchanged

CBW

No operands

Convert byte into word.

Algorithm:

if high bit of AL = 1 then:

  • AH = 255 (0FFh) else
  • AH = 0

Example:

MOV AX, 0 ; AH = 0, AL = 0
MOV AL, -5 ; AX = 000FBh (251)
CBW ; AX = 0FFFBh (-5)
RET
C Z S O P A
unchanged

CLC

No operands

Clear Carry flag.

Algorithm:

CF = 0

C
0

CLD

No operands

Clear Direction flag. SI and DI will be incremented by chain instructions: CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.

Algorithm:

DF = 0

D
0

CLI

No operands

Clear Interrupt enable flag. This disables hardware interrupts.

Algorithm:

IF = 0

I 0

CMC

No operands

Complement Carry flag. Inverts value of CF.

Algorithm:

if CF = 1 then CF = 0 if CF = 0 then CF = 1

C
r

CMP

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Compare.

Algorithm:

operand1 - operand2 result is not stored anywhere, flags are set (OF, SF, ZF, AF, PF, CF) according to result.

Example:

MOV AL, 5
MOV BL, 5
CMP AL, BL ; AL = 5, ZF = 1 (so equal!)
RET
C Z S O P A
r r r r r r

CMPSB

No operands

Compare bytes: ES:[DI] from DS:[SI].

Algorithm:

  • DS:[SI] - ES:[DI]
  • set flags according to result: OF, SF, ZF, AF, PF, CF
  • if DF = 0 then
    • SI = SI + 1
    • DI = DI + 1 else
    • SI = SI - 1
    • DI = DI - 1
C Z S O P A
r r r r r r

CMPSW

No operands

Compare words: ES:[DI] from DS:[SI].

Algorithm:

  • DS:[SI] - ES:[DI]
  • set flags according to result: OF, SF, ZF, AF, PF, CF
  • if DF = 0 then
    • SI = SI + 2
    • DI = DI + 2 else
    • SI = SI - 2
    • DI = DI - 2
C Z S O P A
r r r r r r

CWD

No operands

Convert Word to Double word.

Algorithm:

if high bit of AX = 1 then:

  • DX = 65535 (0FFFFh) else
  • DX = 0

Example:

MOV DX, 0 ; DX = 0
MOV AX, 0 ; AX = 0
MOV AX, -5 ; DX AX = 00000h:0FFFBh
CWD ; DX AX = 0FFFFh:0FFFBh
RET
C Z S O P A
unchanged

DAA

No operands

Decimal adjust After Addition. Corrects the result of addition of two packed BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

  • AL = AL + 6
  • AF = 1 if AL > 9Fh or CF = 1 then:
  • AL = AL + 60h
  • CF = 1

Example:

MOV AL, 0Fh ; AL = 0Fh (15)
DAA ; AL = 15h
RET
C Z S O P A
r r r r r r

DAS

No operands

Decimal adjust After Subtraction. Corrects the result of subtraction of two packed BCD values.

Algorithm:

if low nibble of AL > 9 or AF = 1 then:

  • AL = AL - 6
  • AF = 1 if AL > 9Fh or CF = 1 then:
  • AL = AL - 60h
  • CF = 1

Example:

MOV AL, 0FFh ; AL = 0FFh (-1)
DAS ; AL = 99h, CF = 1
RET
C Z S O P A
r r r r r r

DEC

  • REG
  • memory

Decrement.

Algorithm:

operand = operand - 1

Example:

MOV AL, 255 ; AL = 0FFh (255 or -1)
DEC AL ; AL = 0FEh (254 or -2)
RET
CF - unchanged!
Z S O P A
r r r r r

DIV

  • REG
  • memory

Unsigned divide.

Algorithm:

when operand is a byte: AL = AX / operand AH = remainder (modulus) when operand is a word: AX = (DX AX) / operand DX = remainder (modulus)

Example:

MOV AX, 203 ; AX = 00CBh
MOV BL, 4
DIV BL ; AL = 50 (32h), AH = 3
RET
C Z S O P A
? ? ? ? ? ?

HLT

No operands

Halt the System.

Example:

MOV AX, 5
HLT
C Z S O P A
unchanged

IDIV

  • REG
  • memory

Signed divide.

Algorithm:

when operand is a byte: AL = AX / operand AH = remainder (modulus) when operand is a word: AX = (DX AX) / operand DX = remainder (modulus)

Example:

MOV AX, -203 ; AX = 0FF35h
MOV BL, 4
IDIV BL ; AL = -50 (0CEh), AH = -3 (0FDh)
RET
C Z S O P A
? ? ? ? ? ?

IMUL

  • REG
  • memory

Signed multiply.

Algorithm:

when operand is a byte: AX = AL * operand. when operand is a word: (DX AX) = AX * operand.

Example:

MOV AL, -2
MOV BL, -4
IMUL BL ; AX = 8
RET

CF=OF=0 when result fits into operand of IMUL.

C Z S O P A
r ? ? r ? ?

IN

AL, im.byte AL, DX AX, im.byte AX, DX

Input from port into AL or AX. Second operand is a port number. If required to access port number over 255 - DX register should be used.

Example:

IN AX, 4 ; get status of traffic lights.
IN AL, 7 ; get status of stepper-motor.
C Z S O P A
unchanged

INC

  • REG
  • memory

Increment.

Algorithm:

operand = operand + 1

Example:

MOV AL, 4
INC AL ; AL = 5
RET
CF - unchanged!
Z S O P A
r r r r r

INT

  • immediate byte

Interrupt numbered by immediate byte (0..255).

Algorithm:

Push to stack:

  • flags register
  • CS
  • IP
  • IF = 0
  • Transfer control to interrupt procedure

Example:

MOV AH, 0Eh ; teletype.
MOV AL, 'A'
RET
C Z S O P A I
unchanged   0

INTO

No operands

Interrupt 4 if Overflow flag is 1.

Algorithm:

if OF = 1 then INT 4

Example:

; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
INTO ; process error.
RET

IRET

No operands

Interrupt Return.

Algorithm:

Pop from stack:

  • IP
  • CS
    • flags register
C Z S O P A
popped

JA label

Short Jump if first operand is Above second operand (as set by CMP instruction). Unsigned.

Algorithm:

if (CF = 0) and (ZF = 0) then jump

Example:

 include 'emu8086.inc'
  ORG 100h
MOV AL, 250
CMP AL, 5
 JA label1
  PRINT 'AL is not above 5'
JMP exit
label1:
PRINT 'AL is above 5'
exit:
 RET
C Z S O P A
unchanged

JAE label

Short Jump if first operand is Above or Equal to second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 0 then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 5
 CMP AL, 5
  JAE label1
PRINT 'AL is not above or equal to 5'
JMP exit
label1:
 PRINT 'AL is above or equal to 5'
 exit:
  RET
C Z S O P A
unchanged

JB label

Short Jump if first operand is Below second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 1
  CMP AL, 5
  JB label1
  PRINT 'AL is not below 5'
  JMP exit
label1:
  PRINT 'AL is below 5'
exit:
  RET
C Z S O P A
unchanged

JBE label

Short Jump if first operand is Below or Equal to second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 or ZF = 1 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 5
  CMP AL, 5
  JBE label1
  PRINT 'AL is not below or equal to 5'
  JMP exit
label1:
  PRINT 'AL is below or equal to 5'
exit:
  RET
C Z S O P A
unchanged

JC label

Short Jump if Carry flag is set to 1.

Algorithm:

if CF = 1 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 255
  ADD AL, 1
  JC label1
  PRINT 'no carry.'
  JMP exit
label1:
  PRINT 'has carry.'
exit:
  RET
C Z S O P A
unchanged

JCXZ label

Short Jump if CX register is 0.

Algorithm:

if CX = 0 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV CX, 0
  JCXZ label1
  PRINT 'CX is not zero.'
  JMP exit
label1:
  PRINT 'CX is zero.'
exit:
  RET
C Z S O P A
unchanged

JE label

Short Jump if first operand is Equal to second operand (as set by CMP instruction). Signed/Unsigned.

Algorithm:

if ZF = 1 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 5
  CMP AL, 5
  JE label1
  PRINT 'AL is not equal to 5.'
  JMP exit
label1:
  PRINT 'AL is equal to 5.'
exit:
  RET
C Z S O P A
unchanged

JG label

Short Jump if first operand is Greater then second operand (as set by CMP instruction). Signed.

Algorithm:

if (ZF = 0) and (SF = OF) then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 5
  CMP AL, -5
  JG label1
  PRINT 'AL is not greater -5.'
  JMP exit
label1:
  PRINT 'AL is greater -5.'
exit:
 RET
C Z S O P A
unchanged

JGE label

Short Jump if first operand is Greater or Equal to second operand (as set by CMP instruction). Signed.

Algorithm:

if SF = OF then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 2
  CMP AL, -5
  JGE label1
  PRINT 'AL < -5'
  JMP exit
label1:
  PRINT 'AL >= -5'
exit:
  RET
C Z S O P A
unchanged

JL label

Short Jump if first operand is Less then second operand (as set by CMP instruction). Signed.

Algorithm:

if SF <> OF then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, -2
  CMP AL, 5
  JL label1
  PRINT 'AL >= 5.'
  JMP exit
label1:
  PRINT 'AL < 5.'
exit:
  RET
C Z S O P A
unchanged

JLE label

Short Jump if first operand is Less or Equal to second operand (as set by CMP instruction). Signed.

Algorithm:

if SF <> OF or ZF = 1 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, -2
  CMP AL, 5
  JLE label1
  PRINT 'AL > 5.'
  JMP exit
label1:
  PRINT 'AL <= 5.'
 exit:
  RET
C Z S O P A
unchanged

JMP label

4-byte address

Unconditional Jump. Transfers control to another part of the program. 4-byte address may be entered in this form: 1234h:5678h, first value is a segment second value is an offset.

Algorithm: always jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 5
  JMP label1 ; jump over 2 lines!
  PRINT 'Not Jumped!'
  MOV AL, 0
label1:
  PRINT 'Got Here!'
  RET
C Z S O P A
unchanged

JNA label

Short Jump if first operand is Not Above second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 or ZF = 1 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 2
  CMP AL, 5
  JNA label1
  PRINT 'AL is above 5.'
  JMP exit
label1:
  PRINT 'AL is not above 5.'
exit:
  RET
C Z S O P A
unchanged

JNAE label

Short Jump if first operand is Not Above and Not Equal to second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 1 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 2
  CMP AL, 5
  JNAE label1
  PRINT 'AL >= 5.'
  JMP exit
label1:
  PRINT 'AL < 5.'
exit:
  RET
C Z S O P A
unchanged

JNB label

Short Jump if first operand is Not Below second operand (as set by CMP instruction). Unsigned.

Algorithm:

if CF = 0 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 7
  CMP AL, 5
  JNB label1
  PRINT 'AL < 5.'
  JMP exit
label1:
  PRINT 'AL >= 5.'
exit:
  RET
C Z S O P A
unchanged

JNBE label

Short Jump if first operand is Not Below and Not Equal to second operand (as set by CMP instruction). Unsigned.

Algorithm:

if (CF = 0) and (ZF = 0) then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 7
  CMP AL, 5
  JNBE label1
  PRINT 'AL <= 5.'
  JMP exit
label1:
  PRINT 'AL > 5.'
exit:
  RET
C Z S O P A
unchanged

JNC label

Short Jump if Carry flag is set to 0.

Algorithm:

if CF = 0 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 2
  ADD AL, 3
  JNC label1
  PRINT 'has carry.'
  JMP exit
label1:
  PRINT 'no carry.'
exit:
 RET
C Z S O P A
unchanged

JNE label

Short Jump if first operand is Not Equal to second operand (as set by CMP instruction). Signed/Unsigned.

Algorithm:

if ZF = 0 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 2
  CMP AL, 3
  JNE label1
  PRINT 'AL = 3.'
  JMP exit
label1:
  PRINT 'Al <> 3.'
exit:
  RET
C Z S O P A
unchanged

JNG label

Short Jump if first operand is Not Greater then second operand (as set by CMP instruction). Signed.

Algorithm:

if (ZF = 1) and (SF <> OF) then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 2
  CMP AL, 3
  JNG label1
  PRINT 'AL > 3.'
  JMP exit
label1:
  PRINT 'Al <= 3.'
exit:
  RET
C Z S O P A
unchanged

JNGE label

Short Jump if first operand is Not Greater and Not Equal to second operand (as set by CMP instruction). Signed.

Algorithm:

if SF <> OF then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 2
  CMP AL, 3
  JNGE label1
  PRINT 'AL >= 3.'
  JMP exit
label1:
  PRINT 'Al < 3.'
exit:
  RET
C Z S O P A
unchanged

JNL label

Short Jump if first operand is Not Less then second operand (as set by CMP instruction). Signed.

Algorithm:

if SF = OF then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 2
  CMP AL, -3
  JNL label1
  PRINT 'AL < -3.'
  JMP exit
label1:
  PRINT 'Al >= -3.'
exit:
 RET
C Z S O P A
unchanged

JNLE label

Short Jump if first operand is Not Less and Not Equal to second operand (as set by CMP instruction). Signed.

Algorithm:

if (SF = OF) and (ZF = 0) then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 2
CMP AL, -3
JNLE label1
PRINT 'AL <= -3.'
JMP exit
label1:
PRINT 'Al > -3.'
exit:
RET
C Z S O P A
unchanged

JNO label

Short Jump if Not Overflow.

Algorithm:

if OF = 0 then jump

Example:

; -5 - 2 = -7 (inside -128..127)
; the result of SUB is correct,
; so OF = 0:
include 'emu8086.inc'
ORG 100h
MOV AL, -5
SUB AL, 2 ; AL = 0F9h (-7)
JNO label1
PRINT 'overflow!'
JMP exit
label1:
PRINT 'no overflow.'
exit:
 RET
C Z S O P A
unchanged

JNP label

Short Jump if No Parity (odd).

Only 8 low bits of result are checked.

Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 0 then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNP label1
PRINT 'parity even.'
JMP exit
label1:
PRINT 'parity odd.'
exit:
RET
C Z S O P A
unchanged

JNS label

Short Jump if Not Signed (if positive).

Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if SF = 0 then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNS label1
PRINT 'signed.'
JMP exit
label1:
PRINT 'not signed.'
exit:
 RET
 C Z S O P A
 unchanged

JNZ label

Short Jump if Not Zero (not equal).

Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if ZF = 0 then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 00000111b ; AL = 7
OR AL, 0 ; just set flags.
JNZ label1
PRINT 'zero.'
JMP exit
label1:
PRINT 'not zero.'
exit:
RET
C Z S O P A
unchanged

JO label

Short Jump if Overflow.

Algorithm:

if OF = 1 then jump

Example:

; -5 - 127 = -132 (not in -128..127)
; the result of SUB is wrong (124),
; so OF = 1 is set:
include 'emu8086.inc'
org 100h
MOV AL, -5
SUB AL, 127 ; AL = 7Ch (124)
JO label1
PRINT 'no overflow.'
JMP exit
label1:
PRINT 'overflow!'
exit:
 RET
C Z S O P A
unchanged

JP label

Short Jump if Parity (even). Only 8 low bits of result are checked.

Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 1 then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0 ; just set flags.
JP label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
C Z S O P A
unchanged

JPE label

Short Jump if Parity Even. Only 8 low bits of result are checked.

Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 1 then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 00000101b ; AL = 5
OR AL, 0 ; just set flags.
JPE label1
PRINT 'parity odd.'
JMP exit
label1:
PRINT 'parity even.'
exit:
RET
C Z S O P A
unchanged

JPO label

Short Jump if Parity Odd. Only 8 low bits of result are checked.

Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if PF = 0 then jump

Example:

  include 'emu8086.inc'
  ORG 100h
  MOV AL, 00000111b ; AL = 7
  OR AL, 0 ; just set flags.
  JPO label1
  PRINT 'parity even.'
  JMP exit
label1:
  PRINT 'parity odd.'
exit:
  RET
C Z S O P A
unchanged

JS label

Short Jump if Signed (if negative).

Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if SF = 1 then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 10000000b ; AL = -128
OR AL, 0 ; just set flags.
JS label1
PRINT 'not signed.'
JMP exit
label1:
PRINT 'signed.'
exit:
 RET
C Z S O P A
unchanged

JZ label

Short Jump if Zero (equal).

Set by CMP, SUB, ADD, TEST, AND, OR, XOR instructions.

Algorithm:

if ZF = 1 then jump

Example:

include 'emu8086.inc'
ORG 100h
MOV AL, 5
CMP AL, 5
JZ label1
PRINT 'AL is not equal to 5.'
JMP exit
label1:
PRINT 'AL is equal to 5.'
exit:
RET
C Z S O P A
unchanged

LAHF

No operands

Load AH from 8 low bits of Flags register.

Algorithm:

AH = flags register

AH bit:  7    6   5    4   3    2   1    0
       [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]

bits 1, 3, 5 are reserved.

C Z S O P A
unchanged

LDS

  • REG, memory

Load memory double word into word register and DS.

Algorithm:

  • REG = first word
  • DS = second word

Example:

ORG 100h
LDS AX, m
RET
m DW 1234h
  DW 5678h
END

AX is set to 1234h, DS is set to 5678h.

C Z S O P A
unchanged

LEA

  • REG, memory
  • Load Effective Address.

Algorithm:

  • REG = address of memory (offset)

Example:

MOV BX, 35h
MOV DI, 12h
LEA SI, [BX+DI] ; SI = 35h + 12h = 47h

Note: The integrated 8086 assembler automatically replaces LEA with a more efficient MOV where possible. For example:

org 100h
LEA AX, m ; AX = offset of m
RET
m dw 1234h
END
C Z S O P A
unchanged

LES

  • REG, memory

Load memory double word into word register and ES.

Algorithm:

  • REG = first word
  • ES = second word

Example:

ORG 100h
LES AX, m
RET
m DW 1234h
  DW 5678h
END

AX is set to 1234h, ES is set to 5678h.

C Z S O P A
unchanged

LODSB

No operands

Load byte at DS:[SI] into AL. Update SI.

Algorithm:

  • AL = DS:[SI]
  • if DF = 0 then
    • SI = SI + 1 else
    • SI = SI - 1

Example:

 ORG 100h
 LEA SI, a1
 MOV CX, 5
 MOV AH, 0Eh
 m: LODSB
 INT 10h
 LOOP m
 RET

 a1 DB 'H', 'e', 'l', 'l', 'o'
C Z S O P A
unchanged

LODSW

No operands

Load word at DS:[SI] into AX. Update SI.

Algorithm:

  • AX = DS:[SI]
  • if DF = 0 then
    • SI = SI + 2 else
    • SI = SI - 2

Example:

ORG 100h
LEA SI, a1
MOV CX, 5
REP LODSW ; finally there will be 555h in AX.
RET
a1 dw 111h, 222h, 333h, 444h, 555h
C Z S O P A
unchanged

LOOP label

Decrease CX, jump to label if CX not zero.

Algorithm:

  • CX = CX - 1
  • if CX <> 0 then
    • jump else
    • no jump, continue

Example:

include 'emu8086.inc'
ORG 100h
MOV CX, 5
label1:
 PRINTN 'loop!'
  LOOP label1
RET
C Z S O P A
unchanged

LOOPE label

Decrease CX, jump to label if CX not zero and Equal (ZF = 1).

Algorithm:

  • CX = CX - 1
  • if (CX <> 0) and (ZF = 1) then
    • jump else
    • no jump, continue

Example:

; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.
include 'emu8086.inc'
ORG 100h
MOV AX, 0
MOV CX, 5
label1:
PUTC '-'
ADD AX, 100
CMP AH, 0
LOOPE label1
RET
C Z S O P A
unchanged

LOOPNE label

Decrease CX, jump to label if CX not zero and Not Equal (ZF = 0).

Algorithm:

  • CX = CX - 1
  • if (CX <> 0) and (ZF = 0) then
    • jump else
    • no jump, continue

Example:

; Loop until '7' is found,
; or 5 times.
  include 'emu8086.inc'
  ORG 100h
  MOV SI, 0
  MOV CX, 5
label1:
  PUTC '-'
  MOV AL, v1[SI]
  INC SI ; next byte (SI=SI+1).
  CMP AL, 7
  LOOPNE label1
RET
v1 db 9, 8, 7, 6, 5
C Z S O P A
unchanged

LOOPNZ label

Decrease CX, jump to label if CX not zero and ZF = 0.

Algorithm:

  • CX = CX - 1
  • if (CX <> 0) and (ZF = 0) then
    • jump else
    • no jump, continue

Example:

; Loop until '7' is found,
; or 5 times.
 include 'emu8086.inc'
  ORG 100h
MOV SI, 0
MOV CX, 5
label1:
 PUTC '-'
  MOV AL, v1[SI]
INC SI ; next byte (SI=SI+1).
CMP AL, 7
LOOPNZ label1
RET
v1 db 9, 8, 7, 6, 5
C Z S O P A
unchanged

LOOPZ label

Decrease CX, jump to label if CX not zero and ZF = 1.

Algorithm:

  • CX = CX - 1
  • if (CX <> 0) and (ZF = 1) then
    • jump else
    • no jump, continue

Example:

; Loop until result fits into AL alone,
; or 5 times. The result will be over 255
; on third loop (100+100+100),
; so loop will exit.
include 'emu8086.inc'
ORG 100h
MOV AX, 0
MOV CX, 5
label1:
PUTC '-'
ADD AX, 100
CMP AH, 0
LOOPZ label1
RET
C Z S O P A
unchanged

MOV

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate
  • SREG, memory
  • memory, SREG
  • REG, SREG
  • SREG, REG

Copy operand2 to operand1.

The MOV instruction cannot:

  • set the value of the CS and IP registers.
  • copy value of one segment register to another segment register (should copy to general register first).
  • copy immediate value to segment register (should copy to general register first).

Algorithm:

operand1 = operand2

Example:

ORG 100h
MOV AX, 0B800h ; set AX = B800h (VGA memory).
MOV DS, AX ; copy value of AX to DS.
MOV CL, 'A' ; CL = 41h (ASCII code).
MOV CH, 01011111b ; CL = color attribute.
MOV BX, 15Eh ; BX = position on screen.
MOV [BX], CX ; w.[0B800h:015Eh] = CX.
RET ; returns to operating system.
C Z S O P A
unchanged

MOVSB

No operands

Copy byte at DS:[SI] to ES:[DI]. Update SI and DI.

Algorithm:

  • ES:[DI] = DS:[SI]
  • if DF = 0 then
    • SI = SI + 1
    • DI = DI + 1 else
    • SI = SI - 1
    • DI = DI - 1

Example:

ORG 100h
CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5
REP MOVSB
RET
a1 DB 1,2,3,4,5
a2 DB 5 DUP(0)
C Z S O P A
unchanged

MOVSW

No operands

Copy word at DS:[SI] to ES:[DI]. Update SI and DI.

Algorithm:

  • ES:[DI] = DS:[SI]
  • if DF = 0 then
    • SI = SI + 2
    • DI = DI + 2 else
    • SI = SI - 2
    • DI = DI - 2

Example:

ORG 100h
CLD
LEA SI, a1
LEA DI, a2
MOV CX, 5

REP MOVSW

RET
a1 DW 1,2,3,4,5
a2 DW 5 DUP(0)
C Z S O P A
unchanged

MUL

REG memory

Unsigned multiply.

Algorithm:

when operand is a byte:

  • AX = AL * operand. when operand is a word:
  • (DX AX) = AX * operand.

Example:

MOV AL, 200 ; AL = 0C8h
MOV BL, 4
MUL BL      ; AX = 0320h (800)
RET

CF=OF=0 when high section of the result is zero.

C Z S O P A
r ? ? r ? ?

NEG

  • REG
  • memory

Negate. Makes operand negative (two's complement).

Algorithm:

  • Invert all bits of the operand
  • Add 1 to inverted operand

Example:

MOV AL, 5 ; AL = 05h
NEG AL ; AL = 0FBh (-5)
NEG AL ; AL = 05h (5)
RET
C Z S O P A
r r r r r r

NOP

No operands

No Operation.

Algorithm:

  • Do nothing

Example:

; do nothing, 3 times:
NOP
NOP
NOP
RET
C Z S O P A
unchanged

NOT

  • REG
  • memory

Invert each bit of the operand.

Algorithm:

  • if bit is 1 turn it to 0.
  • if bit is 0 turn it to 1.

Example:

MOV AL, 00011011b
NOT AL ; AL = 11100100b
RET
C Z S O P A
unchanged

OR

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Logical OR between all bits of two operands. Result is stored in first operand. These rules apply: 1 OR 1 = 1 1 OR 0 = 1 0 OR 1 = 1 0 OR 0 = 0

Example:

MOV AL, 'A' ; AL = 01000001b
OR AL, 00100000b ; AL = 01100001b ('a')
RET
C Z S O P A
0 r r 0 r ?

OUT

  • im.byte, AL
  • im.byte, AX
  • DX, AL
  • DX, AX

Output from AL or AX to port. First operand is a port number. If required to access port number over 255 - DX register should be used.

Example:

memory, REG
REG, REG
memory, immediate
REG, immediate 
MOV AX, 0FFFh ; Turn on all
OUT 4, AX ; traffic lights.
MOV AL, 100b ; Turn on the third
OUT 7, AL ; magnet of the stepper-motor.
C Z S O P A
unchanged

POP

  • REG
  • SREG
  • memory Get 16 bit value from the stack.

Algorithm:

  • operand = SS:[SP] (top of the stack)
  • SP = SP + 2

Example:

MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
C Z S O P A
unchanged

POPA

No operands

Pop all general purpose registers DI, SI, BP, SP, BX, DX, CX, AX from the stack. SP value is ignored, it is Popped but not set to SP register). Note: this instruction works only on 80186 CPU and later!

Algorithm:

  • POP DI
  • POP SI
  • POP BP
  • POP xx (SP value ignored)
  • POP BX
  • POP DX
  • POP CX
  • POP AX
C Z S O P A
unchanged

POPF

No operands

Get flags register from the stack.

Algorithm:

  • flags = SS:[SP] (top of the stack)
  • SP = SP + 2
C Z S O P A
popped

PUSH

  • REG
  • SREG
  • memory
  • immediate

Store 16 bit value in the stack. Note: PUSH immediate works only on 80186 CPU and later!

Algorithm:

  • SP = SP - 2
  • SS:[SP] (top of the stack) = operand

Example:

MOV AX, 1234h
PUSH AX
POP DX ; DX = 1234h
RET
C Z S O P A
unchanged

PUSHA

No operands

Push all general purpose registers AX, CX, DX, BX, SP, BP, SI, DI in the stack. Original value of SP register (before PUSHA) is used. Note: this instruction works only on 80186 CPU and later!

Algorithm:

  • PUSH AX
  • PUSH CX
  • PUSH DX
  • PUSH BX
  • PUSH SP
  • PUSH BP
  • PUSH SI
  • PUSH DI
C Z S O P A
unchanged

PUSHF

No operands

Store flags register in the stack.

Algorithm:

  • SP = SP - 2
  • SS:[SP] (top of the stack) = flags
C Z S O P A
unchanged

RCL

  • memory, immediate
  • REG, immediate
  • memory, CL
  • REG, CL

Rotate operand1 left through Carry Flag.

The number of rotates is set by operand2.

When immediate is greater then 1, assembler generates several RCL xx, 1 instructions because 8086 has machine code only for this instruction (the same principle works for all other shift/rotate instructions).

Algorithm:

shift all bits left, the bit that goes off is set to CF and previous value of CF is inserted to the right-most position.

Example:

STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCL AL, 1 ; AL = 00111001b, CF=0.
RET

OF=0 if first operand keeps original sign.

C O
r r

RCR

  • memory, immediate
  • REG, immediate
  • memory, CL
  • REG, CL

Rotate operand1 right through Carry Flag. The number of rotates is set by operand2.

Algorithm:

shift all bits right, the bit that goes off is set to CF and previous value of CF is inserted to the leftmost position.

Example:

STC ; set carry (CF=1).
MOV AL, 1Ch ; AL = 00011100b
RCR AL, 1 ; AL = 10001110b, CF=0.
RET

OF=0 if first operand keeps original sign.

C O
r r

REP chain instruction

Repeat following MOVSB, MOVSW, LODSB, LODSW, STOSB, STOSW instructions CX times.

Algorithm:

check_cx: if CX <> 0 then

  • do following chain instruction
  • CX = CX - 1
  • go back to check_cx else
  • exit from REP cycle
Z
r

REPE chain instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Equal), maximum CX times.

Algorithm:

check_cx: if CX <> 0 then

  • do following chain instruction
  • CX = CX - 1
  • if ZF = 1 then:
    • go back to check_cx else
    • exit from REPE cycle else
  • exit from REPE cycle
Z
r

REPNE chain instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Equal), maximum CX times.

Algorithm:

check_cx: if CX <> 0 then

  • do following chain instruction
  • CX = CX - 1
  • if ZF = 0 then:
    • go back to check_cx else
    • exit from REPNE cycle else
  • exit from REPNE cycle
Z
r

REPNZ chain instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 0 (result is Not Zero), maximum CX times.

Algorithm:

check_cx: if CX <> 0 then

  • do following chain instruction
  • CX = CX - 1
  • if ZF = 0 then:
    • go back to check_cx else
    • exit from REPNZ cycle else
  • exit from REPNZ cycle
Z
r

REPZ chain instruction

Repeat following CMPSB, CMPSW, SCASB, SCASW instructions while ZF = 1 (result is Zero), maximum CX times.

Algorithm:

check_cx: if CX <> 0 then

  • do following chain instruction
  • CX = CX - 1
  • if ZF = 1 then:
    • go back to check_cx else
    • exit from REPZ cycle else
  • exit from REPZ cycle
Z
r

RET

  • No operands
  • or even immediate

Return from near procedure.

Algorithm:

  • Pop from stack:
    • IP
  • if immediate operand is present: SP = SP + operand

Example:

ORG 100h          ; for COM file.

CALL p1
ADD AX, 1

RET               ; return to OS.

p1 PROC           ; procedure declaration.
    MOV AX, 1234h
    RET           ; return to caller.
p1 ENDP
C Z S O P A
unchanged

RETF

  • No operands
  • or even immediate

Return from Far procedure.

Algorithm:

  • Pop from stack:
    • IP
    • CS
  • if immediate operand is present: SP = SP + operand
C Z S O P A
unchanged

ROL

  • memory, immediate
  • REG, immediate
  • memory, CL
  • REG, CL

Rotate operand1 left. The number of rotates is set by operand2.

Algorithm:

shift all bits left, the bit that goes off is set to CF and the same bit is inserted to the right-most position.

Example:

MOV AL, 1Ch ; AL = 00011100b
ROL AL, 1 ; AL = 00111000b, CF=0.
RET

OF=0 if first operand keeps original sign.

C O
r r

ROR

  • memory, immediate
  • REG, immediate
  • memory, CL
  • REG, CL

Rotate operand1 right. The number of rotates is set by operand2.

Algorithm:

shift all bits right, the bit that goes off is set to CF and the same bit is inserted to the left-most position.

Example:

MOV AL, 1Ch ; AL = 00011100b
ROR AL, 1 ; AL = 00001110b, CF=0.
RET

OF=0 if first operand keeps original sign.

C O
r r

SAHF

No operands

Store AH register into low 8 bits of Flags register.

Algorithm:

flags register = AH

AH bit:  7    6   5    4   3    2   1    0
       [SF] [ZF] [0] [AF] [0] [PF] [1] [CF]

bits 1, 3, 5 are reserved.

C Z S O P A
r r r r r r

SAL

  • memory, immediate
  • REG, immediate
  • memory, CL
  • REG, CL

Shift Arithmetic operand1 Left. The number of shifts is set by operand2.

Algorithm:

  • Shift all bits left, the bit that goes off is set to CF.
  • Zero bit is inserted to the right-most position.

Example:

MOV AL, 0E0h ; AL = 11100000b
SAL AL, 1 ; AL = 11000000b, CF=1.
RET

OF=0 if first operand keeps original sign.

C O
r r

SAR

  • memory, immediate
  • REG, immediate
  • memory, CL
  • REG, CL

Shift Arithmetic operand1 Right. The number of shifts is set by operand2.

Algorithm:

  • Shift all bits right, the bit that goes off is set to CF.
  • The sign bit that is inserted to the left-most position has the same value as before shift.

Example:

MOV AL, 0E0h ; AL = 11100000b
SAR AL, 1 ; AL = 11110000b, CF=0.
MOV BL, 4Ch ; BL = 01001100b
SAR BL, 1 ; BL = 00100110b, CF=0.
RET

OF=0 if first operand keeps original sign.

C O
r r

SBB

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Subtract with Borrow.

Algorithm:

operand1 = operand1 - operand2 - CF

Example:

STC
MOV AL, 5
SBB AL, 3 ; AL = 5 - 3 - 1 = 1
RET
C Z S O P A
r r r r r r

SCASB

No operands

Compare bytes: AL from ES:[DI].

Algorithm:

  • AL - ES:[DI]

  • set flags according to result: OF, SF, ZF, AF, PF, CF

  • if DF = 0 then

    • DI = DI + 1 else
    • DI = DI - 1

C Z S O P A r r r r r r


### SCASW 
No operands

Compare words: AX from ES:[DI].

Algorithm:

* AX - ES:[DI]
* set flags according to result:
OF, SF, ZF, AF, PF, CF
* if DF = 0 then
  * DI = DI + 2
else
  * DI = DI - 2

C Z S O P A r r r r r r


### SHL
* memory, immediate
* REG, immediate
* memory, CL
* REG, CL

Shift operand1 Left. The number of shifts is set by operand2.

Algorithm:

* Shift all bits left, the bit that goes off is set to CF.
* Zero bit is inserted to the right-most position.

Example:
```nasm
MOV AL, 11100000b
SHL AL, 1 ; AL = 11000000b, CF=1.
RET

OF=0 if first operand keeps original sign.

C O
r r

SHR

  • memory, immediate
  • REG, immediate
  • memory, CL
  • REG, CL

Shift operand1 Right. The number of shifts is set by operand2.

Algorithm:

  • Shift all bits right, the bit that goes off is set to CF.
  • Zero bit is inserted to the left-most position.

Example:

MOV AL, 00000111b
SHR AL, 1 ; AL = 00000011b, CF=1.
RET

OF=0 if first operand keeps original sign.

C O
r r

STC

No operands

Set Carry flag.

Algorithm:

CF = 1

C
1

STD

No operands

Set Direction flag. SI and DI will be decremented by chain instructions:

CMPSB, CMPSW, LODSB, LODSW, MOVSB, MOVSW, STOSB, STOSW.

Algorithm:

DF = 1

D
1

STI

No operands

Set Interrupt enable flag. This enables hardware interrupts.

Algorithm:

IF = 1

I 1

STOSB

No operands

Store byte in AL into ES:[DI]. Update DI.

Algorithm:

  • ES:[DI] = AL
  • if DF = 0 then
    • DI = DI + 1 else
    • DI = DI - 1

Example:

ORG 100h
LEA DI, a1
MOV AL, 12h
MOV CX, 5
REP STOSB
RET
a1 DB 5 dup(0)
C Z S O P A
unchanged

STOSW

No operands

Store word in AX into ES:[DI]. Update DI.

Algorithm:

  • ES:[DI] = AX
  • if DF = 0 then
    • DI = DI + 2 else
    • DI = DI - 2

Example:

ORG 100h
LEA DI, a1
MOV AX, 1234h
MOV CX, 5

REP STOSW

RET

a1 DW 5 dup(0)
C Z S O P A
unchanged

SUB

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Subtract.

Algorithm:

operand1 = operand1 - operand2

Example:

MOV AL, 5
SUB AL, 1 ; AL = 4
RET
C Z S O P A
r r r r r r

TEST

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Logical AND between all bits of two operands for flags only.

These flags are effected: ZF, SF, PF.

Result is not stored anywhere.

These rules apply:

  • 1 AND 1 = 1
  • 1 AND 0 = 0
  • 0 AND 1 = 0
  • 0 AND 0 = 0

Example:

MOV AL, 00000101b
TEST AL, 1 ; ZF = 0.
TEST AL, 10b ; ZF = 1.
RET
C Z S O P
0 r r 0 r

XCHG

  • REG, memory
  • memory, REG
  • REG, REG

Exchange values of two operands.

Algorithm:

operand1 < - > operand2

Example:

MOV AL, 5
MOV AH, 2
XCHG AL, AH ; AL = 2, AH = 5
XCHG AL, AH ; AL = 5, AH = 2
RET
C Z S O P A
unchanged

XLATB

No operands

Translate byte from table.

Copy value of memory byte at

DS:[BX + unsigned AL] to AL register.

Algorithm:

AL = DS:[BX + unsigned AL]

Example:

ORG 100h
LEA BX, dat
MOV AL, 2
XLATB ; AL = 33h
RET

dat DB 11h, 22h, 33h, 44h, 55h
C Z S O P A
unchanged

XOR

  • REG, memory
  • memory, REG
  • REG, REG
  • memory, immediate
  • REG, immediate

Logical XOR (Exclusive OR) between all bits of two operands.

Result is stored in first operand.

These rules apply: 1 XOR 1 = 0 1 XOR 0 = 1 0 XOR 1 = 1 0 XOR 0 = 0

Example:

MOV AL, 00000111b
XOR AL, 00000010b ; AL = 00000101b
RET
C Z S O P A
0 r r 0 r ?

Notes

Converted into GFM from http://www.gabrielececchetti.it/Teaching/CalcolatoriElettronici/Docs/i8086_instruction_set.pdf

About

Complete 8086 instruction set documentation.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published