Skip to content

micro-fan/fan_tools

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

About this package

Build Status PyPi version

Here are set of internal tools that are shared between different projects internally. Originally most tools related to testing, so they provide some base classes for various cases in testing

NOTE: all our tools are intentially support only 3.8+ python. Some might work with other versions, but we're going to be free from all these crutches to backport things like async/await to lower versions, so if it works - fine, if not - feel free to send PR, but it isn't going to be merged all times.

Testing helpers

Caching decorators

# cache async function that returns pydantic.BaseModel
from fan_tools.python import cache_async

@cache_async[type(dict)](fname, model, {})
async def func():
    return model


# cache sync function that returns json serializable response
from fan_tools.python import memoize

@memoize
def func(*args, **kwargs):
    return json.dumps(
        {
            'args': args,
            'kwargs': kwargs,
        }
    )

ApiUrls

Defined in fan_tools/testing/__init__.py. Required for defining nested urls with formatting.

You can use it in fixtures, like:

@pytest.fixture(scope='session')
def api(api_v_base):
    yield ApiUrls('{}/'.format(api_v_base), {
        'password_reset_request': 'password/request/code/',
        'password_reset': 'password/reset/',
        'user_review_list': 'user/{user_id}/review/',
        'user_review': 'user/{user_id}/review/{review_id}/',
        'wine_review': 'wine/{wine_id}/review/',
        'drink_review': 'drink/{drink_id}/review/',
    })


def test_review_list(user, api):
    resp = user.get_json(api.user_review_list(user_id=user1.id), {'page_size': 2})

PropsMeta

You can find source in fan_tools/testing/meta.py.

For now it convert methods that are started with prop__ into descriptors with cache.

class A(metaclass=PropsMeta):
    def prop__conn(self):
        conn = SomeConnection()
        return conn

Became:

class A:
    @property
    def conn(self):
        if not hasattr(self, '__conn'):
            setattr(self, '__conn', SomeConnection())
        return self.__conn

Thus it allows quite nice style of testing with lazy initialization. Like:

class MyTest(TestCase, metaclass=PropsMeta):
    def prop__conn(self):
        return psycopg2.connect('')

    def prop__cursor(self):
        return self.conn.cursor()

    def test_simple_query(self):
        self.cursor.execute('select 1;')
        row = self.cursor.fetchone()
        assert row[0] == 1, 'Row: {}'.format(row)

Here you just get and use self.cursor, but automatically you get connection and cursor and cache they.

This is just simple example, complex tests can use more deep relations in tests. And this approach is way more easier and faster than complex setUp methods.

fan_tools.unix helpers

Basic unix helpers

  • run - run command in shell
  • succ - wrapper around run with return code and stderr check
  • wait_socket - wait for socket awailable (eg. you can wait for postgresql with wait_socket('localhost', 5432)
  • asucc - asynchronous version of succ for use with await. supports realtime logging
  • source - acts similar to bash 'source' or '.' commands.
  • cd - contextmanager to do something with temporarily changed directory

interpolate_sysenv

Format string with system variables + defaults.

PG_DEFAULTS = {
    'PGDATABASE': 'postgres',
    'PGPORT': 5432,
    'PGHOST': 'localhost',
    'PGUSER': 'postgres',
    'PGPASSWORD': '',
    }
DSN = interpolate_sysenv('postgresql://{PGUSER}:{PGPASSWORD}@{PGHOST}:{PGPORT}/{PGDATABASE}', PG_DEFAULTS)

fan_tools.fan_logging.JSFormatter

Enable json output with additional fields, suitable for structured logging into ELK or similar solutions.

Accepts env_vars key with environmental keys that should be included into log.

# this example uses safe_logger as handler (pip install safe_logger)
import logging
import logging.config


LOGGING = {
    'version': 1,
    'disable_existing_loggers': True,
    'formatters': {
        'json': {
            '()': 'fan_tools.fan_logging.JSFormatter',
            'env_vars': ['HOME'],
        },
        'standard': {
            'format': '%(asctime)s [%(levelname)s] %(name)s: %(message)s'
        },
    },
    'handlers': {
        'default': {
            'level': 'DEBUG',
            'class': 'safe_logger.TimedRotatingFileHandlerSafe',
            'filename': 'test_json.log',
            'when': 'midnight',
            'interval': 1,
            'backupCount': 30,
            'formatter': 'json',
            },
    },
    'loggers': {
        '': {
            'handlers': ['default'],
            'level': 'DEBUG',
        },
    },
}

logging.config.dictConfig(LOGGING)
log = logging.getLogger('TestLogger')

log.debug('test debug')
log.info('test info')
log.warn('test warn')
log.error('test error')

fan_tools.mon_server.MetricsServer

FastAPI based server that servers metrics in prometheus format.

import uvicorn

from fan_tools.mon_server.certs import update_certs_loop

app = FastAPI()
mserver = MetricsServer(app)
mserver.add_task(update_certs_loop, hosts=['perfectlabel.io', 'robopickles.com'])
uvicorn.run(app, host='0.0.0.0', port=os.environ.get('MONITORING_PORT', 8000))

fan_tools.backup

There are two backup helpers: fan_tools.backup.s3.S3backup and fan_tools.backup.gcloud.GCloud

We're assuming that backup script has access to backup execution and dump directory.

Default setup includes support for docker container that access DB.

By default script provides interface for monitoring (last backup date).

fan_tools.backup.s3.S3backup provides external script called fan_s3_backup that has accepts some configuration via environmental variables.

  • ENABLE_BACKUP - you need enable this by setting to non false value, default: false
  • BACKUP_DB_CONTAINER - container for backup command execution
  • BACKUP_DB_SCRIPT - command for exectuion on db server from above. default: /create_backup.py
  • BACKUP_COMMAND - overrides all above
  • -b/--bucket - to define bucket. default for s3: environmental variable AWS_BACKUP_BUCKET
  • BACKUP_PREFIX or -p/--prefix - directory backup prefix, usually it is subfolder for dumps, default: backups/
  • -d/--daemonize - should we run in daemonized mode
  • MONITORING_PORT - port for listen when run in daemonized mode. default: 80

S3 specific:

  • AWS_BACKUP_KEY
  • AWS_BACKUP_SECRET
  • AWS_BACKUP_BUCKET

fan_tools.drf.serializers.EnumSerializer

Allow you to deserealize incoming strings into Enum values. You should add EnumSerializer into your serializers by hand.

from enum import IntEnum

from django.db import models
from rest_framework import serializers

from fan_tools.drf.serializers import EnumSerializer


class MyEnum(IntEnum):
  one = 1
  two = 2

class ExampleModel(models.Model):
  value = models.IntegerField(choices=[(x.name, x.value) for x in MyEnum])

class ExampleSerializer(serializers.ModelSerializer):
  value = EnumSerializer(MyEnum)

# this allows you to post value as: {'value': 'one'}

Due to Enum and IntegerField realizations you may use Enum.value in querysets

ExampleModel.objects.filter(value=MyEnum.two)

fan_tools.django.log_requests.LoggerMiddleware

LoggerMiddleware will log request meta + raw post data into log.

For django<1.10 please use fan_tools.django.log_requests.DeprecatedLoggerMiddleware

fan_tools.django.request_uniq

Decorator adds a unique for each uwsgi request dict as first function argument. For tests mock _get_request_unique_cache

fan_tools.django.call_once_on_commit

Make function called only once on transaction commit. Here is examples where function do_some_useful will be called only once after transaction has been committed.

class SomeModel(models.Model):
    name = IntegerField()

@call_once_on_commit
def do_some_useful():
    pass


def hook(sender, instance, **kwargs):
    do_some_useful()

models.signals.post_save.connect(hook, sender=SomeModel)

with transaction.atomic():
    some_model = SomeModel()
    some_model.name = 'One'
    some_model.save()
    some_model.name = 'Two'
    some_model.save()

For tests with nested transactions (commit actually most times is not called) it is useful to override behaviour call_once_on_commit when decorated function executed right in place where it is called. To do so mock on_commit function. Example pytest fixture:

@pytest.fixture(scope='session', autouse=True)
def immediate_on_commit():
    def side_effect():
        return lambda f: f()

    with mock.patch('fan_tools.django.on_commit', side_effect=side_effect) as m:
        yield m

fan_tools.django.fields.ChoicesEnum

Used for choices attribute for in model field

class FooBarEnum(ChoicesEnum):
    foo = 1
    bar = 2

class ExampleModel(models.Model):
    type = models.IntegerField(choices=FooBarEnum.get_choices())

fan_tools.django.db.utils.set_word_similarity_threshold

Allow to set postgres trigram word similarity threshold for default django database connection

set_word_similarity_threshold(0.4)

fan_tools.django.contrib.postgres.models.LTreeModel

Django Model containing postgres ltree

class LTreeExampleModel(LTreeModel):

fan_tools.django.contrib.postgres.fields.LTreeDescendants

Lookup for postgres ltree descendants

LTreeExampleModel.objects.filter(path__descendants='root.level1')

fan_tools.django.contrib.postgres.fields.LTreeNlevel

Lookup for postgres ltree by level depth

LTreeExampleModel.objects.filter(path__nlevel=2)

fan_tools.django.db.pgfields.SimilarityLookup

Postgres text %> text operator

# Add this import to models.py (file should be imported before lookup usage)
import fan_tools.django.db.pgfields  # noqa

Books.objects.filter(title__similar='Animal Farm')

fan_tools.django.db.pgfields.WordSimilarity

Postgres text1 <<-> text2 operator. It returns 1 - word_similarity(text1, text2)

from django.db.models import Value, F

similarity = WordSimilarity(Value('Animal Farm'), F('title'))
Books.objects.annotate(similarity=similarity)

fan_tools.drf.filters.NumberInFilter

Django filter that match if integer is in the integers list separated by comma

class ExampleFilterSet(FilterSet):
    example_values = NumberInFilter(field_name='example_value', lookup_expr='in')

fan_tools.django.mail.Mail

Send text and html emails using django templates.

Mail(
    recipient_list=[user.email],
    template_name='user/emails/reset_password',
    context={
        'frontend_url': settings.FRONTEND_URL,
    },
).send()

fan_tools.django.url.build_absolute_uri

Get domain section of absolute url of current page using django request object.

build_absolute_uri(request)

fan_tools.drf.forms.use_form

Helps to use power of serializers for simple APIs checks.

from rest_framework import serializers
from rest_framework.decorators import api_view
from fan_tools.drf import use_form


class SimpleForm(serializers.Serializer):
    test_int = serializers.IntegerField()
    test_str = serializers.CharField()


@api_view(['GET'])
@use_form(SimpleForm)
def my_api(data):
    print(f'Data: {data["test_int"]} and {data["test_str"]}')

fan_tools.drf.pagination.ApiPageNumberPagination

Allow turn off pagination by specifying zero page_zize.

REST_FRAMEWORK = {
    'DEFAULT_PAGINATION_CLASS': 'fan_tools.drf.pagination.ApiPageNumberPagination',
    ...
}

fan_tools.rest_framework.renderers.ApiRenderer

Pretty Django Rest Framework API renderer with error codes.

REST_FRAMEWORK = {
    'DEFAULT_RENDERER_CLASSES': (
        'fan_tools.drf.renderers.ApiRenderer',
    },
    ...
}

fan_tools.rest_framework.handlers.api_exception_handler

Pretty Django Rest Framework API exception handler with error codes.

REST_FRAMEWORK = {
    'EXCEPTION_HANDLER': 'fan_tools.drf.handlers.api_exception_handler',
    ...
}

fan_tools.drf.asserts.assert_validation_error

Helper assert function to be used in tests to match the validation error codes.

assert_validation_error(response, 'email', 'unique')

fan_tools.aio_utils.DbRecordsProcessorWorker

Asyncio worker which wait for new records in postgres db table and process them.

fan_tools.aio_utils.dict_query/sql_update

aiopg shortcuts

fan_tools.python.execfile

Backport of python's 2 execfile function.

Usage: execfile('path/to/file.py', globals(), locals())

Returns: True if file exists and executed, False if file doesn't exist

fan_tools.doc_utils.fan_sphinx

Sphinx extensions to generate documentation for django restframework serializers and examples for http requests.

In order to use them specify dependency for package installation:

pip install fan_tools[doc_utils]

Usage:

# Add to Sphinx conf.py
extensions = [
    # ...
    'fan_tools.doc_utils.fan_sphinx.dyn_serializer',
    'fan_tools.doc_utils.fan_sphinx.http_log'
]

Commands

fan_env_yaml

Convert template yaml with substituion of %{ENV_NAME} strings to appropriate environment variables.

Usage: fan_env_yaml src_file dst_file

fan_ci_script

Helper to run default CI pipeline. Defaults are set up for giltab defaults. Includes stages:

  • build docker image with temporary name (commit sha by default)
  • run tests (optional)
  • push branch (by default only for master and staging branches)
  • push tag, if there are tags
  • cache image with common name
  • delete image with temporary name

It's optimized for parallel launches, so you need to use unique temporary name (--temp-name). We want keep our system clean if possible, so we'll delete this tag in the end. But we don't want to repeat basic steps over and over, so we will cache image with common cache name (--cache-name), it will remove previous cached image.

fan_wait

Wait for socket awailable/not-awailable with timeout.

# Wait until database port up for 180 seconds
fan_wait -t 180 postgres 5432

# Wait until nginx port down for 30 seconds
fan_wait -t 30 nginx 80

run_filebeat

  • checks environmental variables -e KEY=VALUE -e KEY2=VALUE2
  • converts yaml template fan_env_yaml {TEMPLATE} /tmp/filebeat.yml
  • run /usr/bin/filebeat /tmp/filebeat.yml
run_filebeat -e CHECKME=VALUE path_to_template

doc_serializer

  • output rst with list of serializers
  • generates documentation artifacts for serializers
usage: doc_serializer [-h] [--rst] [--artifacts]

Parse serializers sources

optional arguments:
  -h, --help   show this help message and exit
  --rst        Output rst with serializers
  --artifacts  Write serializers artifacts

image_utils.Transpose

Save rotated by exif tag images. Some browsers/applications don't respect this tag, so it is easier to do that explicitly.

class Image(models.Model):
    uploaded_by = models.ForeignKey(User, blank=True, null=True, on_delete=models.SET_NULL)

    image = models.ImageField(blank=True, upload_to=image_upload_to)
    thumb_image = models.ImageField(blank=True, upload_to=thumb_upload_to)

    full_url = models.CharField(blank=True, max_length=255)
    thumb_url = models.CharField(blank=True, max_length=255)

    created = models.DateTimeField(auto_now_add=True)
    updated = models.DateTimeField(auto_now=True)

class ImageSerializer(ModelSerializer):
    class Meta:
        model = Image
        fields = ['id', 'created', 'updated', 'full_url', 'thumb_url']

class UploadImageView(views.GenericAPIView):
    permission_classes = [IsAuthenticated]

    def post(self, request, *args, **kwargs):
        image_data = request.data['image']
        # Fix an image orientation based on exif and remove exif from the resulted image.
        transformed_image = Transpose().process(image_data)
        obj = Image.objects.create(uploaded_by=request.user, image=transformed_image)
        obj.full_url = obj.image.url
        obj.save()

        s = ImageSerializer(instance=obj)
        return Response(s.data)

fan_tools.metrics

Helper to send metrics. Example for datadog

Usually you want to setup some kind of notification for metric with name error_metric. It is sent by send_error_metric.

For DataDog your metric query will look like:

sum:error_metric{service:prod*} by {error_type,service}.as_count()

development

# keep docker container
tox -e py311-django40 -- --keep-db django_tests
tox -e py311-django40 -- --keep-db --docker-skip django_tests

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages