Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Dev][AMD] Implement conditional async load for AMD HIP Backend #250

Merged
merged 5 commits into from
Nov 28, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion 3rdparty/tvm
Submodule tvm updated from fba6ef to 1cc769
30 changes: 22 additions & 8 deletions benchmark/tilelang/benchmark_tilelang_matmul.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,12 @@
from tvm.tl.autotuner import *
import itertools

import logging

logger = logging.getLogger(__name__)

logger.setLevel(logging.DEBUG)


def ref_program(A, B):
return A @ B.T
Expand All @@ -16,16 +22,20 @@ def get_configs():
num_stages = [0, 1, 2, 3, 4]
thread_num = [128, 256]
enable_rasteration = [True, False]
k_pack = [1, 2]

_configs = list(
itertools.product(block_M, block_N, block_K, num_stages, thread_num, enable_rasteration))
itertools.product(block_M, block_N, block_K, num_stages, thread_num, enable_rasteration,
k_pack))

configs = [{
'block_M': c[0],
'block_N': c[1],
'block_K': c[2],
'num_stages': c[3],
'thread_num': c[4],
'enable_rasteration': c[5]
'enable_rasteration': c[5],
'k_pack': c[6]
} for c in _configs]
return configs

Expand All @@ -34,22 +44,26 @@ def matmul(M, N, K):

@autotune(
configs=get_configs(),
keys=['block_M', 'block_N', 'block_K', 'num_stages', 'thread_num'],
keys=[
'block_M', 'block_N', 'block_K', 'num_stages', 'thread_num', 'enable_rasteration',
'k_pack'
],
warmup=3,
rep=5)
@jit(
out_idx=[2],
supply_type=tl.TensorSupplyType.Integer,
ref_prog=ref_program,
skip_check=True,
skip_check=False,
profiler="tvm",
target="hip")
def kernel(block_M=None,
block_N=None,
block_K=None,
num_stages=None,
thread_num=None,
enable_rasteration=None):
enable_rasteration=None,
k_pack=None):
dtype = "float16"
accum_dtype = "float"

Expand All @@ -66,9 +80,9 @@ def main(A: T.Buffer((M, K), dtype), B: T.Buffer((N, K), dtype), C: T.Buffer((M,

T.clear(C_local)
for k in T.Pipelined(T.ceildiv(K, block_K), num_stages=num_stages):
T.copy(A[by * block_M, k * block_K], A_shared)
T.copy(B[bx * block_N, k * block_K], B_shared)
T.gemm(A_shared, B_shared, C_local, transpose_B=True)
T.copy(A[by * block_M, k * block_K], A_shared, coalesced_width=4 * k_pack)
T.copy(B[bx * block_N, k * block_K], B_shared, coalesced_width=4 * k_pack)
T.gemm(A_shared, B_shared, C_local, transpose_B=True, k_pack=k_pack)
T.copy(C_local, C[by * block_M, bx * block_N])

return main
Expand Down