Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Multi-stage pipeline + scoring observability #122

Merged
merged 16 commits into from
Dec 9, 2019
Merged
123 changes: 107 additions & 16 deletions .pipelines/azdo-ci-build-train.yml
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ trigger:
- docs/
- environment_setup/
- ml_service/util/create_scoring_image.*
- ml_service/util/smoke_test_scoring_service.py

variables:
- template: azdo-variables.yml
Expand Down Expand Up @@ -36,8 +37,9 @@ stages:
# Invoke the Python building and publishing a training pipeline
python $(Build.SourcesDirectory)/ml_service/pipelines/${{ variables.BUILD_TRAIN_SCRIPT }}
displayName: 'Publish Azure Machine Learning Pipeline'

- stage: 'Trigger_AML_Pipeline'
displayName: 'Train, evaluate, register model via previously published AML pipeline'
displayName: 'Train model'
jobs:
- job: "Get_Pipeline_ID"
condition: and(succeeded(), eq(coalesce(variables['auto-trigger-training'], 'true'), 'true'))
Expand Down Expand Up @@ -87,32 +89,121 @@ stages:
- job: "Training_Run_Report"
dependsOn: "Run_ML_Pipeline"
displayName: "Determine if evaluation succeeded and new model is registered"
pool:
vmImage: 'ubuntu-latest'
container: mcr.microsoft.com/mlops/python:latest
timeoutInMinutes: 0
steps:
- template: azdo-template-get-model-version.yml
- stage: 'Deploy_ACI'
displayName: 'Deploy to ACI'
dependsOn: Trigger_AML_Pipeline
condition: and(succeeded(), variables['ACI_DEPLOYMENT_NAME'])
jobs:
- job: "Deploy_ACI"
displayName: "Deploy to ACI"
pool:
vmImage: 'ubuntu-latest'
container: mcr.microsoft.com/mlops/python:latest
timeoutInMinutes: 0
steps:
- template: azdo-template-get-model-version.yml
- task: ms-air-aiagility.vss-services-azureml.azureml-model-deploy-task.AMLModelDeploy@0
displayName: 'Azure ML Model Deploy'
inputs:
azureSubscription: $(WORKSPACE_SVC_CONNECTION)
modelSourceType: manualSpec
modelName: '$(MODEL_NAME)'
modelVersion: $(MODEL_VERSION)
inferencePath: '$(Build.SourcesDirectory)/code/scoring/inference_config.yml'
deploymentTarget: ACI
deploymentName: $(ACI_DEPLOYMENT_NAME)
deployConfig: '$(Build.SourcesDirectory)/code/scoring/deployment_config_aci.yml'
overwriteExistingDeployment: true
- task: AzureCLI@1
displayName: 'Smoke test'
inputs:
azureSubscription: '$(WORKSPACE_SVC_CONNECTION)'
scriptLocation: inlineScript
inlineScript: |
set -e # fail on error
export SUBSCRIPTION_ID=$(az account show --query id -o tsv)
python ml_service/util/smoke_test_scoring_service.py --type ACI --service "$(ACI_DEPLOYMENT_NAME)"

- stage: 'Deploy_AKS'
displayName: 'Deploy to AKS'
dependsOn: Deploy_ACI
condition: and(succeeded(), variables['AKS_DEPLOYMENT_NAME'])
jobs:
- job: "Deploy_AKS"
displayName: "Deploy to AKS"
pool:
vmImage: 'ubuntu-latest'
container: mcr.microsoft.com/mlops/python:latest
timeoutInMinutes: 0
steps:
- template: azdo-template-get-model-version.yml
- task: ms-air-aiagility.vss-services-azureml.azureml-model-deploy-task.AMLModelDeploy@0
displayName: 'Azure ML Model Deploy'
inputs:
azureSubscription: $(WORKSPACE_SVC_CONNECTION)
modelSourceType: manualSpec
modelName: '$(MODEL_NAME)'
modelVersion: $(MODEL_VERSION)
inferencePath: '$(Build.SourcesDirectory)/code/scoring/inference_config.yml'
deploymentTarget: AKS
aksCluster: $(AKS_COMPUTE_NAME)
deploymentName: $(AKS_DEPLOYMENT_NAME)
deployConfig: '$(Build.SourcesDirectory)/code/scoring/deployment_config_aks.yml'
overwriteExistingDeployment: true
- task: AzureCLI@1
displayName: 'Smoke test'
inputs:
azureSubscription: '$(WORKSPACE_SVC_CONNECTION)'
scriptLocation: inlineScript
inlineScript: |
set -e # fail on error
export SUBSCRIPTION_ID=$(az account show --query id -o tsv)
python $(Build.SourcesDirectory)/ml_service/pipelines/verify_train_pipeline.py --build_id $(Build.BuildId)
displayName: "Determine if evaluation succeeded and new model is registered"
- task: CopyFiles@2
displayName: 'Copy Files to: $(Build.ArtifactStagingDirectory)'
python ml_service/util/smoke_test_scoring_service.py --type AKS --service "$(AKS_DEPLOYMENT_NAME)"

- stage: 'Deploy_Webapp'
displayName: 'Deploy to Webapp'
dependsOn: Trigger_AML_Pipeline
condition: and(succeeded(), variables['WEBAPP_DEPLOYMENT_NAME'])
jobs:
- job: "Deploy_Webapp"
displayName: "Deploy to Webapp"
pool:
vmImage: 'ubuntu-latest'
container: mcr.microsoft.com/mlops/python:latest
timeoutInMinutes: 0
steps:
- template: azdo-template-get-model-version.yml
- task: AzureCLI@1
displayName: 'Create scoring image and set IMAGE_LOCATION variable'
inputs:
SourceFolder: '$(Build.SourcesDirectory)'
TargetFolder: '$(Build.ArtifactStagingDirectory)'
Contents: |
code/scoring/**
ml_service/util/**
- task: PublishBuildArtifacts@1
displayName: 'Publish Artifact'
azureSubscription: '$(WORKSPACE_SVC_CONNECTION)'
scriptLocation: inlineScript
inlineScript: |
set -e # fail on error
export SUBSCRIPTION_ID=$(az account show --query id -o tsv)
python ml_service/util/create_scoring_image.py --output_image_location_file image_location.txt
# Output image location to Azure DevOps job
IMAGE_LOCATION="$(cat image_location.txt)"
echo "##vso[task.setvariable variable=IMAGE_LOCATION]$IMAGE_LOCATION"
- task: AzureWebAppContainer@1
name: WebAppDeploy
displayName: 'Azure Web App on Container Deploy'
inputs:
azureSubscription: 'AzureResourceConnection'
appName: '$(WEBAPP_DEPLOYMENT_NAME)'
containers: '$(IMAGE_LOCATION)'
- task: AzureCLI@1
displayName: 'Smoke test'
inputs:
ArtifactName: 'mlops-pipelines'
publishLocation: 'container'
pathtoPublish: '$(Build.ArtifactStagingDirectory)'
TargetPath: '$(Build.ArtifactStagingDirectory)'
azureSubscription: '$(WORKSPACE_SVC_CONNECTION)'
scriptLocation: inlineScript
inlineScript: |
set -e # fail on error
export SUBSCRIPTION_ID=$(az account show --query id -o tsv)
python ml_service/util/smoke_test_scoring_service.py --type Webapp --service "$(WebAppDeploy.AppServiceApplicationUrl)/score"
14 changes: 14 additions & 0 deletions .pipelines/azdo-template-get-model-version.yml
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
steps:
- task: AzureCLI@1
inputs:
azureSubscription: '$(WORKSPACE_SVC_CONNECTION)'
scriptLocation: inlineScript
inlineScript: |
set -e # fail on error
export SUBSCRIPTION_ID=$(az account show --query id -o tsv)
python $(Build.SourcesDirectory)/ml_service/pipelines/verify_train_pipeline.py --build_id $(Build.BuildId) --output_model_version_file "model_version.txt"
# Output model version to Azure DevOps job
MODEL_VERSION="$(cat model_version.txt)"
echo "##vso[task.setvariable variable=MODEL_VERSION]$MODEL_VERSION"
name: 'getversion'
displayName: "Determine if evaluation succeeded and new model is registered"
21 changes: 19 additions & 2 deletions code/scoring/score.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,16 +38,33 @@ def init():
model = joblib.load(model_path)


def run(raw_data):
def run(raw_data, request_headers):
data = json.loads(raw_data)["data"]
data = numpy.array(data)
result = model.predict(data)

# Demonstrate how we can log custom data into the Application Insights
# traces collection.
# The 'X-Ms-Request-id' value is generated internally and can be used to
# correlate a log entry with the Application Insights requests collection.
# The HTTP 'traceparent' header may be set by the caller to implement
# distributed tracing (per the W3C Trace Context proposed specification)
# and can be used to correlate the request to external systems.
print(('{{"RequestId":"{0}", '
'"TraceParent":"{1}", '
'"NumberOfPredictions":{2}}}'
).format(
request_headers.get("X-Ms-Request-Id", ""),
request_headers.get("Traceparent", ""),
len(result)
))

return {"result": result.tolist()}


if __name__ == "__main__":
# Test scoring
init()
test_row = '{"data":[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}'
prediction = run(test_row)
prediction = run(test_row, {})
print("Test result: ", prediction)
Loading