Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added notebooks for training and scoring a Diabetes Ridge regression model #145

Merged
merged 4 commits into from
Jan 22, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 114 additions & 0 deletions experimentation/Diabetes Ridge Regression Scoring.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Score Data with a Ridge Regression Model Trained on the Diabetes Dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook loads the model trained in the Diabetes Ridge Regression Training notebook, prepares the data, and scores the data."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"import json\n",
"import numpy\n",
"from azureml.core.model import Model\n",
"import joblib"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Model"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"model_path = Model.get_model_path(model_name=\"sklearn_regression_model.pkl\")\n",
"model = joblib.load(model_path)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Prepare Data"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"raw_data = '{\"data\":[[1,2,3,4,5,6,7,8,9,10],[10,9,8,7,6,5,4,3,2,1]]}'\n",
"\n",
"data = json.loads(raw_data)[\"data\"]\n",
"data = numpy.array(data)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Score Data"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Test result: {'result': [5113.099642122813, 3713.6329271385353]}\n"
]
}
],
"source": [
"request_headers = {}\n",
"\n",
"result = model.predict(data)\n",
"print(\"Test result: \", {\"result\": result.tolist()})"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (storedna)",
"language": "python",
"name": "storedna"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
171 changes: 171 additions & 0 deletions experimentation/Diabetes Ridge Regression Training.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,171 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Train a Ridge Regression Model on the Diabetes Dataset"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"This notebook loads the Diabetes dataset from sklearn, splits the data into training and validation sets, trains a Ridge regression model, validates the model on the validation set, and saves the model."
]
},
{
"cell_type": "code",
"execution_count": 1,
"metadata": {},
"outputs": [],
"source": [
"from sklearn.datasets import load_diabetes\n",
"from sklearn.linear_model import Ridge\n",
"from sklearn.metrics import mean_squared_error\n",
"from sklearn.model_selection import train_test_split\n",
"import joblib"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Load Data"
]
},
{
"cell_type": "code",
"execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
"X, y = load_diabetes(return_X_y=True)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Split Data into Training and Validation Sets"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)\n",
"data = {\"train\": {\"X\": X_train, \"y\": y_train},\n",
" \"test\": {\"X\": X_test, \"y\": y_test}}"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Train Model on Training Set"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None,\n",
" normalize=False, random_state=None, solver='auto', tol=0.001)"
]
},
"execution_count": 4,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"alpha = 0.5\n",
"\n",
"reg = Ridge(alpha=alpha)\n",
"reg.fit(data[\"train\"][\"X\"], data[\"train\"][\"y\"])"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Validate Model on Validation Set"
]
},
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"mse: 3298.9096058070622\n"
]
}
],
"source": [
"preds = reg.predict(data[\"test\"][\"X\"])\n",
"print(\"mse: \", mean_squared_error(preds, y_test))"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Save Model"
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"data": {
"text/plain": [
"['sklearn_regression_model.pkl']"
]
},
"execution_count": 7,
"metadata": {},
"output_type": "execute_result"
}
],
"source": [
"model_name = \"sklearn_regression_model.pkl\"\n",
"\n",
"joblib.dump(value=reg, filename=model_name)"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python (storedna)",
"language": "python",
"name": "storedna"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.6.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}