-
Notifications
You must be signed in to change notification settings - Fork 834
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
56d50c3
commit df83c7a
Showing
1 changed file
with
161 additions
and
0 deletions.
There are no files selected for viewing
161 changes: 161 additions & 0 deletions
161
notebooks/samples/Vowpal Wabbit - Heart Disease Detection.ipynb
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,161 @@ | ||
{ | ||
"metadata": { | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": 3 | ||
}, | ||
"orig_nbformat": 2 | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 2, | ||
"cells": [ | ||
{ | ||
"source": [ | ||
"## Heart Disease Detection with VowalWabbit Classifier" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"source": [ | ||
"#### Read dataset" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dataset = spark.read.format(\"csv\")\\\n", | ||
" .option(\"header\", True)\\\n", | ||
" .load(\"wasbs://publicwasb@mmlspark.blob.core.windows.net/heart_disease_prediction_data.csv\")\n", | ||
"# print dataset size\n", | ||
"print(\"records read: \" + str(dataset.count()))" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# convert features to double type\n", | ||
"from pyspark.sql.functions import col\n", | ||
"from pyspark.sql.types import DoubleType\n", | ||
"for colName in dataset.columns:\n", | ||
" dataset = dataset.withColumn(colName, col(colName).cast(DoubleType()))\n", | ||
"print(\"Schema: \")\n", | ||
"dataset.printSchema()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"dataset.show(10, truncate=False)" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"#### Split the dataset into train and test" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train, test = dataset.randomSplit([0.85, 0.15], seed=1)" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"#### Use VowalWabbitFeaturizer to convert data features into vector" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from mmlspark.vw import VowpalWabbitFeaturizer\n", | ||
"featurizer = VowpalWabbitFeaturizer(inputCols=dataset.columns[:-1], outputCol=\"features\")\n", | ||
"train_data = featurizer.transform(train)[\"target\", \"features\"]\n", | ||
"test_data = featurizer.transform(test)[\"target\", \"features\"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"train_data.groupBy(\"target\").count().show()" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"#### Model Training" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from mmlspark.vw import VowpalWabbitClassifier\n", | ||
"model = VowpalWabbitClassifier(numPasses=20, labelCol=\"target\", featuresCol=\"features\").fit(train_data)" | ||
] | ||
}, | ||
{ | ||
"source": [ | ||
"#### Model Prediction" | ||
], | ||
"cell_type": "markdown", | ||
"metadata": {} | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"predictions = model.transform(test_data)\n", | ||
"predictions.limit(10).toPandas()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from mmlspark.train import ComputeModelStatistics\n", | ||
"metrics = ComputeModelStatistics(evaluationMetric='classification', labelCol='target', scoredLabelsCol='prediction').transform(predictions)\n", | ||
"display(metrics)" | ||
] | ||
} | ||
] | ||
} |