Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update no_update_context, fix upsert docs #52

Merged
merged 4 commits into from
Oct 1, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
15 changes: 10 additions & 5 deletions autogen/agentchat/contrib/retrieve_user_proxy_agent.py
Original file line number Diff line number Diff line change
Expand Up @@ -125,7 +125,9 @@ def __init__(
- customized_prompt (Optional, str): the customized prompt for the retrieve chat. Default is None.
- customized_answer_prefix (Optional, str): the customized answer prefix for the retrieve chat. Default is "".
If not "" and the customized_answer_prefix is not in the answer, `Update Context` will be triggered.
- no_update_context (Optional, bool): if True, will not apply `Update Context` for interactive retrieval. Default is False.
- update_context (Optional, bool): if False, will not apply `Update Context` for interactive retrieval. Default is True.
- get_or_create (Optional, bool): if True, will create/recreate a collection for the retrieve chat.
This is the same as that used in chromadb. Default is False.
**kwargs (dict): other kwargs in [UserProxyAgent](../user_proxy_agent#__init__).
"""
super().__init__(
Expand All @@ -148,7 +150,8 @@ def __init__(
self._embedding_model = self._retrieve_config.get("embedding_model", "all-MiniLM-L6-v2")
self.customized_prompt = self._retrieve_config.get("customized_prompt", None)
self.customized_answer_prefix = self._retrieve_config.get("customized_answer_prefix", "").upper()
self.no_update_context = self._retrieve_config.get("no_update_context", False)
self.update_context = self._retrieve_config.get("update_context", True)
self._get_or_create = self._retrieve_config.get("get_or_create", False)
self._context_max_tokens = self._max_tokens * 0.8
self._collection = False # the collection is not created
self._ipython = get_ipython()
Expand Down Expand Up @@ -231,7 +234,7 @@ def _generate_retrieve_user_reply(
config: Optional[Any] = None,
) -> Tuple[bool, Union[str, Dict, None]]:
"""In this function, we will update the context and reset the conversation based on different conditions.
We'll update the context and reset the conversation if no_update_context is False and either of the following:
We'll update the context and reset the conversation if update_context is True and either of the following:
(1) the last message contains "UPDATE CONTEXT",
(2) the last message doesn't contain "UPDATE CONTEXT" and the customized_answer_prefix is not in the message.
"""
Expand All @@ -247,7 +250,7 @@ def _generate_retrieve_user_reply(
update_context_case2 = (
self.customized_answer_prefix and self.customized_answer_prefix not in message.get("content", "").upper()
)
if (update_context_case1 or update_context_case2) and not self.no_update_context:
if (update_context_case1 or update_context_case2) and self.update_context:
print(colored("Updating context and resetting conversation.", "green"), flush=True)
# extract the first sentence in the response as the intermediate answer
_message = message.get("content", "").split("\n")[0].strip()
Expand Down Expand Up @@ -286,7 +289,7 @@ def _generate_retrieve_user_reply(
return False, None

def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str = ""):
if not self._collection:
if not self._collection or self._get_or_create:
print("Trying to create collection.")
create_vector_db_from_dir(
dir_path=self._docs_path,
Expand All @@ -296,8 +299,10 @@ def retrieve_docs(self, problem: str, n_results: int = 20, search_string: str =
chunk_mode=self._chunk_mode,
must_break_at_empty_line=self._must_break_at_empty_line,
embedding_model=self._embedding_model,
get_or_create=self._get_or_create,
)
self._collection = True
self._get_or_create = False

results = query_vector_db(
query_texts=[problem],
Expand Down
15 changes: 5 additions & 10 deletions autogen/retrieve_utils.py
Original file line number Diff line number Diff line change
Expand Up @@ -208,18 +208,13 @@ def create_vector_db_from_dir(

chunks = split_files_to_chunks(get_files_from_dir(dir_path), max_tokens, chunk_mode, must_break_at_empty_line)
print(f"Found {len(chunks)} chunks.")
# upsert in batch of 40000
for i in range(0, len(chunks), 40000):
# Upsert in batch of 40000 or less if the total number of chunks is less than 40000
for i in range(0, len(chunks), min(40000, len(chunks))):
end_idx = i + min(40000, len(chunks) - i)
collection.upsert(
documents=chunks[
i : i + 40000
], # we handle tokenization, embedding, and indexing automatically. You can skip that and add your own embeddings as well
ids=[f"doc_{i}" for i in range(i, i + 40000)], # unique for each doc
documents=chunks[i:end_idx],
ids=[f"doc_{j}" for j in range(i, end_idx)], # unique for each doc
)
collection.upsert(
documents=chunks[i : len(chunks)],
ids=[f"doc_{i}" for i in range(i, len(chunks))], # unique for each doc
)
except ValueError as e:
logger.warning(f"{e}")

Expand Down
Loading