Skip to content
This repository has been archived by the owner on Sep 18, 2024. It is now read-only.

Commit

Permalink
fix compressor ut (#1997)
Browse files Browse the repository at this point in the history
  • Loading branch information
chicm-ms authored Feb 5, 2020
1 parent 2de52a8 commit 6b0ecee
Showing 1 changed file with 12 additions and 12 deletions.
24 changes: 12 additions & 12 deletions src/sdk/pynni/tests/test_compressor.py
Original file line number Diff line number Diff line change
Expand Up @@ -135,12 +135,12 @@ def test_torch_fpgm_pruner(self):

model.conv2.weight.data = torch.tensor(w).float()
layer = torch_compressor.compressor.LayerInfo('conv2', model.conv2)
masks = pruner.calc_mask(layer, config_list[0])
masks = pruner.calc_mask(layer, config_list[0], if_calculated=torch.tensor(0))
assert all(torch.sum(masks['weight'], (1, 2, 3)).numpy() == np.array([45., 45., 45., 45., 0., 0., 45., 45., 45., 45.]))

pruner.update_epoch(1)
model.conv2.weight.data = torch.tensor(w).float()
masks = pruner.calc_mask(layer, config_list[1])
masks = pruner.calc_mask(layer, config_list[1], if_calculated=torch.tensor(0))
assert all(torch.sum(masks['weight'], (1, 2, 3)).numpy() == np.array([45., 45., 0., 0., 0., 0., 0., 0., 45., 45.]))

@tf2
Expand Down Expand Up @@ -187,9 +187,9 @@ def test_torch_l1filter_pruner(self):
model.conv1.weight.data = torch.tensor(w).float()
model.conv2.weight.data = torch.tensor(w).float()
layer1 = torch_compressor.compressor.LayerInfo('conv1', model.conv1)
mask1 = pruner.calc_mask(layer1, config_list[0])
mask1 = pruner.calc_mask(layer1, config_list[0], if_calculated=torch.tensor(0))
layer2 = torch_compressor.compressor.LayerInfo('conv2', model.conv2)
mask2 = pruner.calc_mask(layer2, config_list[1])
mask2 = pruner.calc_mask(layer2, config_list[1], if_calculated=torch.tensor(0))
assert all(torch.sum(mask1['weight'], (1, 2, 3)).numpy() == np.array([0., 27., 27., 27., 27.]))
assert all(torch.sum(mask2['weight'], (1, 2, 3)).numpy() == np.array([0., 0., 0., 27., 27.]))

Expand All @@ -215,9 +215,9 @@ def test_torch_slim_pruner(self):
pruner = torch_compressor.SlimPruner(model, config_list)

layer1 = torch_compressor.compressor.LayerInfo('bn1', model.bn1)
mask1 = pruner.calc_mask(layer1, config_list[0])
mask1 = pruner.calc_mask(layer1, config_list[0], if_calculated=torch.tensor(0))
layer2 = torch_compressor.compressor.LayerInfo('bn2', model.bn2)
mask2 = pruner.calc_mask(layer2, config_list[0])
mask2 = pruner.calc_mask(layer2, config_list[0], if_calculated=torch.tensor(0))
assert all(mask1['weight'].numpy() == np.array([0., 1., 1., 1., 1.]))
assert all(mask2['weight'].numpy() == np.array([0., 1., 1., 1., 1.]))
assert all(mask1['bias'].numpy() == np.array([0., 1., 1., 1., 1.]))
Expand All @@ -229,9 +229,9 @@ def test_torch_slim_pruner(self):
pruner = torch_compressor.SlimPruner(model, config_list)

layer1 = torch_compressor.compressor.LayerInfo('bn1', model.bn1)
mask1 = pruner.calc_mask(layer1, config_list[0])
mask1 = pruner.calc_mask(layer1, config_list[0], if_calculated=torch.tensor(0))
layer2 = torch_compressor.compressor.LayerInfo('bn2', model.bn2)
mask2 = pruner.calc_mask(layer2, config_list[0])
mask2 = pruner.calc_mask(layer2, config_list[0], if_calculated=torch.tensor(0))
assert all(mask1['weight'].numpy() == np.array([0., 0., 0., 1., 1.]))
assert all(mask2['weight'].numpy() == np.array([0., 0., 0., 1., 1.]))
assert all(mask1['bias'].numpy() == np.array([0., 0., 0., 1., 1.]))
Expand Down Expand Up @@ -268,14 +268,14 @@ def test_torch_QAT_quantizer(self):
# test ema
x = torch.tensor([[-0.2, 0], [0.1, 0.2]])
out = model.relu(x)
assert math.isclose(model.relu.tracked_min_biased, 0, abs_tol=eps)
assert math.isclose(model.relu.tracked_max_biased, 0.002, abs_tol=eps)
assert math.isclose(model.relu.module.tracked_min_biased, 0, abs_tol=eps)
assert math.isclose(model.relu.module.tracked_max_biased, 0.002, abs_tol=eps)

quantizer.step()
x = torch.tensor([[0.2, 0.4], [0.6, 0.8]])
out = model.relu(x)
assert math.isclose(model.relu.tracked_min_biased, 0.002, abs_tol=eps)
assert math.isclose(model.relu.tracked_max_biased, 0.00998, abs_tol=eps)
assert math.isclose(model.relu.module.tracked_min_biased, 0.002, abs_tol=eps)
assert math.isclose(model.relu.module.tracked_max_biased, 0.00998, abs_tol=eps)


if __name__ == '__main__':
Expand Down

0 comments on commit 6b0ecee

Please sign in to comment.