-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
RMS Normalization and Skip RMS Normalization fusion optimizations (#1974
) Implements RMS Normalization and Skip RMS Normalization fusion optimizations (for use of onnxruntime custom fused ops for these).
- Loading branch information
1 parent
86644e9
commit 0aed232
Showing
10 changed files
with
661 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
from __future__ import annotations |
253 changes: 253 additions & 0 deletions
253
onnxscript/rewriter/onnxruntime/xformers/_smollm_1layer.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,253 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
|
||
""" | ||
A one-layer SmolLM model test case. | ||
This is an onnxscript version of the model. | ||
""" | ||
|
||
import numpy | ||
from onnx.helper import make_tensor | ||
|
||
import onnxscript.ir as ir | ||
from onnxscript import script | ||
from onnxscript.onnx_opset import opset18 | ||
from onnxscript.onnx_types import FLOAT, INT64 | ||
|
||
|
||
def make_model( | ||
input_layernorm_weight_0, | ||
post_attention_layernorm_weight0, | ||
norm_weight, | ||
head_weight, | ||
self_attn_q_proj_weight0, | ||
self_attn_k_proj_weight0, | ||
self_attn_v_proj_weight0, | ||
self_attn_o_proj_weight0, | ||
mlp_gate_proj_weight0, | ||
mlp_up_proj_weight0, | ||
mlp_down_proj_weight0, | ||
): | ||
@script() | ||
def main_graph( | ||
input0: INT64[1, 10], input1: FLOAT[1, 10], input2: INT64[1, 10] | ||
) -> (FLOAT[1, 10, 49152], FLOAT[1, 32, 10, 64], FLOAT[1, 32, 10, 64]): | ||
model_layers_0_input_layernorm_weight = opset18.Constant( | ||
value=input_layernorm_weight_0 | ||
) | ||
model_layers_0_post_attention_layernorm_weight = opset18.Constant( | ||
value=post_attention_layernorm_weight0 | ||
) | ||
model_norm_weight = opset18.Constant(value=norm_weight) | ||
lm_head_weight = opset18.Constant(value=head_weight) | ||
model_layers_0_self_attn_q_proj_weight = opset18.Constant( | ||
value=self_attn_q_proj_weight0 | ||
) | ||
model_layers_0_self_attn_k_proj_weight = opset18.Constant( | ||
value=self_attn_k_proj_weight0 | ||
) | ||
model_layers_0_self_attn_v_proj_weight = opset18.Constant( | ||
value=self_attn_v_proj_weight0 | ||
) | ||
model_layers_0_self_attn_o_proj_weight = opset18.Constant( | ||
value=self_attn_o_proj_weight0 | ||
) | ||
model_layers_0_mlp_gate_proj_weight = opset18.Constant(value=mlp_gate_proj_weight0) | ||
model_layers_0_mlp_up_proj_weight = opset18.Constant(value=mlp_up_proj_weight0) | ||
model_layers_0_mlp_down_proj_weight = opset18.Constant(value=mlp_down_proj_weight0) | ||
|
||
embedding = opset18.Gather(lm_head_weight, input0, axis=0) | ||
minus_inf_10x10 = opset18.ConstantOfShape([10, 10], [-3.4028234663852886e38]) | ||
mask_10x10 = opset18.Trilu(minus_inf_10x10, 1) | ||
slice_5 = opset18.Reshape(mask_10x10, [1, 1, 10, 10]) | ||
unsqueeze_2 = opset18.Unsqueeze(input1, 1) | ||
unsqueeze_3 = opset18.Unsqueeze(unsqueeze_2, 2) | ||
add = slice_5 + unsqueeze_3 | ||
eq = add == 0.0 | ||
slice_10 = slice_5 | ||
masked_fill = opset18.Where(eq, -3.4028235e38, slice_10) | ||
val_179 = opset18.Transpose(masked_fill, perm=[2, 1, 0, 3]) | ||
slice_scatter = opset18.Transpose(val_179, perm=[2, 1, 0, 3]) | ||
val_191 = opset18.Transpose(slice_scatter, perm=[1, 0, 2, 3]) | ||
slice_scatter_1 = opset18.Transpose(val_191, perm=[1, 0, 2, 3]) | ||
unsqueeze_6 = opset18.Unsqueeze(input2, 1) | ||
_to_copy_1 = opset18.Cast(unsqueeze_6, to=1) | ||
view_1 = opset18.Constant( | ||
value=make_tensor( | ||
"value", | ||
1, | ||
dims=[1, 32, 1], | ||
vals=[ | ||
1.0, | ||
0.7498942017555237, | ||
0.5623413324356079, | ||
0.4216965138912201, | ||
0.3162277638912201, | ||
0.23713736236095428, | ||
0.17782793939113617, | ||
0.1333521455526352, | ||
0.10000000149011612, | ||
0.07498941570520401, | ||
0.05623412877321243, | ||
0.04216964915394783, | ||
0.03162277862429619, | ||
0.0237137358635664, | ||
0.017782794311642647, | ||
0.01333521492779255, | ||
0.009999999776482582, | ||
0.007498942315578461, | ||
0.005623413249850273, | ||
0.0042169648222625256, | ||
0.003162277862429619, | ||
0.0023713738191872835, | ||
0.0017782794311642647, | ||
0.0013335214462131262, | ||
0.0010000000474974513, | ||
0.0007498941849917173, | ||
0.000562341301701963, | ||
0.00042169648804701865, | ||
0.0003162277862429619, | ||
0.0002371373848291114, | ||
0.00017782794020604342, | ||
0.0001333521504420787, | ||
], | ||
) | ||
) | ||
view_2 = opset18.Reshape(_to_copy_1, [1, 1, 10], allowzero=0) | ||
bmm = view_1 @ view_2 | ||
view_3 = opset18.Reshape(bmm, [1, 32, 10], allowzero=0) | ||
transpose = opset18.Transpose(view_3, perm=[0, 2, 1]) | ||
cat = opset18.Concat(transpose, transpose, axis=-1) | ||
cos = opset18.Cos(cat) | ||
sin = opset18.Sin(cat) | ||
pow_1 = embedding**2.0 | ||
mean = opset18.ReduceMean(pow_1, [-1], keepdims=1, noop_with_empty_axes=0) | ||
add_1 = mean + 1e-05 | ||
val_244 = opset18.Sqrt(add_1) | ||
rsqrt = opset18.Reciprocal(val_244) | ||
mul_3 = embedding * rsqrt | ||
mul_4 = model_layers_0_input_layernorm_weight * mul_3 | ||
t = opset18.Transpose(model_layers_0_self_attn_q_proj_weight, perm=[1, 0]) | ||
view_5 = mul_4 @ t | ||
t_1 = opset18.Transpose(model_layers_0_self_attn_k_proj_weight, perm=[1, 0]) | ||
view_7 = mul_4 @ t_1 | ||
t_2 = opset18.Transpose(model_layers_0_self_attn_v_proj_weight, perm=[1, 0]) | ||
view_9 = mul_4 @ t_2 | ||
view_10 = opset18.Reshape(view_5, [1, 10, 32, 64], allowzero=0) | ||
transpose_1 = opset18.Transpose(view_10, perm=[0, 2, 1, 3]) | ||
view_11 = opset18.Reshape(view_7, [1, 10, 32, 64], allowzero=0) | ||
transpose_2 = opset18.Transpose(view_11, perm=[0, 2, 1, 3]) | ||
view_12 = opset18.Reshape(view_9, [1, 10, 32, 64], allowzero=0) | ||
transpose_3 = opset18.Transpose(view_12, perm=[0, 2, 1, 3]) | ||
unsqueeze_7 = opset18.Unsqueeze(cos, 1) | ||
unsqueeze_8 = opset18.Unsqueeze(sin, 1) | ||
mul_5 = transpose_1 * unsqueeze_7 | ||
val_267 = opset18.Constant(value_ints=[1]) | ||
slice_19 = opset18.Slice(transpose_1, [0], [32], [3], val_267) | ||
val_277 = opset18.Constant(value_ints=[1]) | ||
slice_20 = opset18.Slice(transpose_1, [32], [9223372036854775807], [3], val_277) | ||
neg = opset18.Neg(slice_20) | ||
cat_1 = opset18.Concat(neg, slice_19, axis=-1) | ||
mul_6 = cat_1 * unsqueeze_8 | ||
add_2 = mul_5 + mul_6 | ||
mul_7 = transpose_2 * unsqueeze_7 | ||
val_287 = opset18.Constant(value_ints=[1]) | ||
slice_21 = opset18.Slice(transpose_2, [0], [32], [3], val_287) | ||
val_297 = opset18.Constant(value_ints=[1]) | ||
slice_22 = opset18.Slice(transpose_2, [32], [9223372036854775807], [3], val_297) | ||
neg_1 = opset18.Neg(slice_22) | ||
cat_2 = opset18.Concat(neg_1, slice_21, axis=-1) | ||
mul_8 = cat_2 * unsqueeze_8 | ||
add_3 = mul_7 + mul_8 | ||
val_346 = opset18.Reshape(add_3, [-1, 10, 64], allowzero=0) | ||
val_347 = opset18.Transpose(val_346, perm=[0, 2, 1]) | ||
val_349 = opset18.Reshape(val_347, [1, 32, 64, 10], allowzero=0) | ||
val_351 = add_2 * [0.35355338] | ||
val_353 = val_349 * [0.35355338] | ||
val_354 = val_351 @ val_353 | ||
val_355 = val_354 + slice_scatter_1 | ||
val_356 = opset18.Softmax(val_355, axis=-1) | ||
getitem = val_356 @ transpose_3 | ||
transpose_4 = opset18.Transpose(getitem, perm=[0, 2, 1, 3]) | ||
view_13 = opset18.Reshape(transpose_4, [1, 10, -1], allowzero=0) | ||
t_3 = opset18.Transpose(model_layers_0_self_attn_o_proj_weight, perm=[1, 0]) | ||
view_15 = view_13 @ t_3 | ||
add_4 = embedding + view_15 | ||
pow_2 = add_4**2.0 | ||
mean_1 = opset18.ReduceMean(pow_2, [-1], keepdims=1, noop_with_empty_axes=0) | ||
add_5 = mean_1 + 1e-05 | ||
val_379 = opset18.Sqrt(add_5) | ||
rsqrt_1 = opset18.Reciprocal(val_379) | ||
mul_9 = add_4 * rsqrt_1 | ||
mul_10 = model_layers_0_post_attention_layernorm_weight * mul_9 | ||
t_4 = opset18.Transpose(model_layers_0_mlp_gate_proj_weight, perm=[1, 0]) | ||
view_17 = mul_10 @ t_4 | ||
val_383 = opset18.Sigmoid(view_17) | ||
silu = view_17 * val_383 | ||
t_5 = opset18.Transpose(model_layers_0_mlp_up_proj_weight, perm=[1, 0]) | ||
view_19 = mul_10 @ t_5 | ||
mul_11 = silu * view_19 | ||
t_6 = opset18.Transpose(model_layers_0_mlp_down_proj_weight, perm=[1, 0]) | ||
view_21 = mul_11 @ t_6 | ||
add_6 = add_4 + view_21 | ||
pow_3 = add_6**2.0 | ||
mean_2 = opset18.ReduceMean(pow_3, [-1], keepdims=1, noop_with_empty_axes=0) | ||
add_7 = mean_2 + 1e-05 | ||
val_391 = opset18.Sqrt(add_7) | ||
rsqrt_2 = opset18.Reciprocal(val_391) | ||
mul_12 = add_6 * rsqrt_2 | ||
mul_13 = model_norm_weight * mul_12 | ||
t_7 = opset18.Transpose(lm_head_weight, perm=[1, 0]) | ||
view_23 = mul_13 @ t_7 | ||
_to_copy_12 = opset18.Identity(view_23) | ||
return _to_copy_12, add_3, transpose_3 | ||
|
||
model = main_graph.to_model_proto() | ||
return model | ||
|
||
|
||
def make_model_with_random_weights(): | ||
input_layernorm_weight_0 = numpy.random.rand(2048).astype(numpy.float32) | ||
post_attention_layernorm_weight0 = numpy.random.rand(2048).astype(numpy.float32) | ||
norm_weight = numpy.random.rand(2048).astype(numpy.float32) | ||
head_weight = numpy.random.rand(49152, 2048).astype(numpy.float32) | ||
self_attn_q_proj_weight0 = numpy.random.rand(2048, 2048).astype(numpy.float32) | ||
self_attn_k_proj_weight0 = numpy.random.rand(2048, 2048).astype(numpy.float32) | ||
self_attn_v_proj_weight0 = numpy.random.rand(2048, 2048).astype(numpy.float32) | ||
self_attn_o_proj_weight0 = numpy.random.rand(2048, 2048).astype(numpy.float32) | ||
mlp_gate_proj_weight0 = numpy.random.rand(8192, 2048).astype(numpy.float32) | ||
mlp_up_proj_weight0 = numpy.random.rand(8192, 2048).astype(numpy.float32) | ||
mlp_down_proj_weight0 = numpy.random.rand(2048, 8192).astype(numpy.float32) | ||
model = make_model( | ||
input_layernorm_weight_0, | ||
post_attention_layernorm_weight0, | ||
norm_weight, | ||
head_weight, | ||
self_attn_q_proj_weight0, | ||
self_attn_k_proj_weight0, | ||
self_attn_v_proj_weight0, | ||
self_attn_o_proj_weight0, | ||
mlp_gate_proj_weight0, | ||
mlp_up_proj_weight0, | ||
mlp_down_proj_weight0, | ||
) | ||
return model | ||
|
||
|
||
class _SmollmTestData: | ||
def get_onnx_model(self): | ||
if not hasattr(self, "_onnx_model"): | ||
model_proto = make_model_with_random_weights() | ||
model = ir.serde.deserialize_model(model_proto) | ||
self._onnx_model = model | ||
return self._onnx_model | ||
|
||
def get_ort_inputs(self): | ||
if not hasattr(self, "_ort_inputs"): | ||
inputs = { | ||
"input0": numpy.random.randint(0, 49152, (1, 10)).astype(numpy.int64), | ||
"input1": numpy.ones((1, 10), dtype=numpy.float32), | ||
"input2": numpy.arange(10, dtype=numpy.int64).reshape(1, 10), | ||
} | ||
self._ort_inputs = inputs | ||
return self._ort_inputs |
122 changes: 122 additions & 0 deletions
122
onnxscript/rewriter/onnxruntime/xformers/_test_models.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,122 @@ | ||
# Copyright (c) Microsoft Corporation. | ||
# Licensed under the MIT License. | ||
from __future__ import annotations | ||
|
||
import os | ||
import tempfile | ||
|
||
import numpy as np | ||
import onnxruntime | ||
import torch | ||
import transformers | ||
from transformers import LlamaConfig | ||
|
||
import onnxscript.ir as ir | ||
import onnxscript.ir._io as io | ||
import onnxscript.optimizer | ||
|
||
# Create a LlamaConfig object with the desired parameters | ||
_config = LlamaConfig( | ||
_name_or_path="HuggingFaceTB/SmolLM-1.7B", | ||
architectures=["LlamaForCausalLM"], | ||
attention_bias=False, | ||
attention_dropout=0.0, | ||
bos_token_id=0, | ||
eos_token_id=0, | ||
hidden_act="silu", | ||
hidden_size=2048, | ||
initializer_range=0.02, | ||
intermediate_size=8192, | ||
max_position_embeddings=2048, | ||
model_type="llama", | ||
num_attention_heads=32, | ||
num_hidden_layers=1, | ||
num_key_value_heads=32, | ||
pretraining_tp=1, | ||
rms_norm_eps=1e-05, | ||
rope_scaling=None, | ||
rope_theta=10000.0, | ||
tie_word_embeddings=True, | ||
torch_dtype="float32", | ||
transformers_version="4.37.2", | ||
use_cache=True, | ||
vocab_size=49152, | ||
) | ||
|
||
# Dimensions for inputs: | ||
_batch_size = 1 | ||
_seq_len = 10 | ||
_hidden_size = _config.hidden_size | ||
_num_attention_heads = _config.num_attention_heads | ||
dim = _hidden_size // _num_attention_heads | ||
_vocab_size = _config.vocab_size | ||
|
||
|
||
class _SmollmTestData: | ||
def __init__(self): | ||
pass | ||
|
||
def get_torch_model(self): | ||
if not hasattr(self, "_torch_model"): | ||
model = transformers.LlamaForCausalLM(_config) | ||
model.eval() | ||
self._torch_model = model | ||
return self._torch_model | ||
|
||
def get_onnx_model(self) -> ir.Model: | ||
model = self.get_torch_model() | ||
inputs = self.get_inputs() | ||
input_names = ["input" + str(i) for i in range(len(inputs)) if inputs[i] is not None] | ||
exported = torch.onnx.export( | ||
model, inputs, input_names=input_names, dynamo=True, fallback=True | ||
) | ||
# ORT Transformer optimizations are applied after basic optimization. | ||
exported_model = exported.model # type: ignore[union-attr] | ||
onnxscript.optimizer.optimize(exported_model) | ||
return exported_model | ||
|
||
def get_inputs(self): | ||
if not hasattr(self, "_inputs"): | ||
input_ids = torch.randint(0, _vocab_size, (_batch_size, _seq_len)).to(torch.int64) | ||
attention_mask = torch.ones(input_ids.shape) | ||
position_ids = torch.arange(0, input_ids.size(-1)).unsqueeze(0) | ||
self._inputs = (input_ids, attention_mask, position_ids) | ||
return self._inputs | ||
|
||
def get_torch_outputs(self): | ||
output = self.get_torch_model()(*self.get_inputs()) | ||
logits = output.logits | ||
past_key_value = output.past_key_values[0] | ||
key = past_key_value[0] | ||
value = past_key_value[1] | ||
return (logits.detach().numpy(), key.detach().numpy(), value.detach().numpy()) | ||
|
||
def get_ort_inputs(self): | ||
inputs = self.get_inputs() | ||
return { | ||
f"input{i}": input.numpy() for i, input in enumerate(inputs) if input is not None | ||
} | ||
|
||
|
||
def _ort_check(model_name: str, model, inputs, expected_outputs, rtol=1e-2, atol=1e-2): | ||
providers = ["CPUExecutionProvider"] | ||
with tempfile.TemporaryDirectory() as temp_dir: | ||
model_path = os.path.join(temp_dir, f"{model_name}.onnx") | ||
io.save(model, model_path) | ||
# Run model | ||
session = onnxruntime.InferenceSession(model_path, providers=providers) | ||
ort_outputs = session.run(None, inputs) | ||
|
||
for i, (baseline_output, optimized_output) in enumerate( | ||
zip(expected_outputs, ort_outputs) | ||
): | ||
try: | ||
np.testing.assert_equal(baseline_output.shape, optimized_output.shape) | ||
np.testing.assert_allclose( | ||
baseline_output, optimized_output, rtol=rtol, atol=atol | ||
) | ||
except AssertionError as e: | ||
print( | ||
f"Failed for model {model_name} and output {i} with rtol={rtol} and atol={atol}\n{e}" | ||
) | ||
raise |
Oops, something went wrong.