forked from apache/tvm
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Topi][Hexagon] Implement Cast F32ToF16 and F16ToF32 Slice Op (apache…
- Loading branch information
Showing
5 changed files
with
374 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
# Licensed to the Apache Software Foundation (ASF) under one | ||
# or more contributor license agreements. See the NOTICE file | ||
# distributed with this work for additional information | ||
# regarding copyright ownership. The ASF licenses this file | ||
# to you under the Apache License, Version 2.0 (the | ||
# "License"); you may not use this file except in compliance | ||
# with the License. You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, | ||
# software distributed under the License is distributed on an | ||
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
# KIND, either express or implied. See the License for the | ||
# specific language governing permissions and limitations | ||
# under the License. | ||
""" Hexagon slice cast op compute and schedule""" | ||
|
||
from tvm import te | ||
from tvm import tir | ||
from ..utils import get_layout_transform_fn | ||
|
||
|
||
def get_layout_transform_for_f32(f32_layout_string): | ||
""" | ||
Given f32 layout string, return transform_layout function and | ||
channel/height split factor to be used for scheduling | ||
""" | ||
layout_transform_fn = get_layout_transform_fn(f32_layout_string) | ||
if f32_layout_string == "nhwc-8h2w32c2w-2d": | ||
return [layout_transform_fn, 8] | ||
if f32_layout_string == "nhwc-4h2w32c2w-2d": | ||
return [layout_transform_fn, 4] | ||
if f32_layout_string == "nc-1024c-2d": | ||
return [layout_transform_fn, 1024] | ||
if f32_layout_string == "nc-512c-2d": | ||
return [layout_transform_fn, 512] | ||
raise RuntimeError(f"Unexpected f32_layout '{f32_layout_string}'") | ||
|
||
|
||
def cast_f16_f32_compute(in_tensor): | ||
out_tensor = te.compute( | ||
in_tensor.shape, lambda *indices: in_tensor[indices].astype("float32"), name="CastF16F32" | ||
) | ||
return out_tensor | ||
|
||
|
||
def cast_f16_f32_stir_schedule_nhwc(func, in_layout, out_layout, h_split_factor): | ||
"""Schedule for nhwc f16 to f32 cast: nhwc layout""" | ||
sch = tir.Schedule(func, debug_mask="all") | ||
block_name = "CastF16F32" | ||
n_orig, h_orig, w_orig, c_orig = sch.get_loops(sch.get_block(block_name)) | ||
h_outer, h_inner = sch.split(h_orig, [None, h_split_factor]) | ||
w_outer, w_inner = sch.split(w_orig, [None, 4]) | ||
c_outer, c_inner = sch.split(c_orig, [None, 32]) | ||
w_inner_o, w_inner_i = sch.split(w_inner, [None, 2]) | ||
sch.reorder(n_orig, h_outer, w_outer, c_outer, h_inner, w_inner_o, c_inner, w_inner_i) | ||
sch.transform_layout(block_name, "A", in_layout) | ||
sch.transform_layout(block_name, block_name, out_layout) | ||
fused = sch.fuse(c_inner, w_inner_i) | ||
sch.vectorize(fused) | ||
return sch | ||
|
||
|
||
def cast_f16_f32_stir_schedule_nc(func, in_layout, out_layout, c_split_factor): | ||
"""Schedule for nc f16 to f32 cast: nc layout""" | ||
sch = tir.Schedule(func, debug_mask="all") | ||
block_name = "CastF16F32" | ||
_, c_orig = sch.get_loops(sch.get_block(block_name)) | ||
_, c_inner = sch.split(c_orig, [None, c_split_factor]) | ||
sch.transform_layout(block_name, "A", in_layout) | ||
sch.transform_layout(block_name, block_name, out_layout) | ||
sch.vectorize(c_inner) | ||
return sch | ||
|
||
|
||
def cast_f16_f32_schedule(cast_func, in_layout_str, out_layout_str): | ||
"""Schedule for f16 to f32 cast: top level function""" | ||
f32_layout_transform_func, split_factor = get_layout_transform_for_f32(out_layout_str) | ||
f16_layout_transform_func = get_layout_transform_fn(in_layout_str) | ||
if in_layout_str == "nhwc-8h2w32c2w-2d": | ||
return cast_f16_f32_stir_schedule_nhwc( | ||
cast_func, | ||
f16_layout_transform_func, | ||
f32_layout_transform_func, | ||
split_factor, | ||
) | ||
if in_layout_str == "nc-1024c-2d": | ||
return cast_f16_f32_stir_schedule_nc( | ||
cast_func, f16_layout_transform_func, f32_layout_transform_func, split_factor | ||
) | ||
raise RuntimeError(f"Unexpected input_layout, output_layout '{input_layout, output_layout}'") | ||
|
||
|
||
def cast_f32_f16_compute(in_tensor): | ||
out_tensor = te.compute( | ||
in_tensor.shape, lambda *indices: in_tensor[indices].astype("float16"), name="CastF32F16" | ||
) | ||
return out_tensor | ||
|
||
|
||
def cast_f32_f16_stir_schedule_nhwc(func, in_layout, out_layout, h_split_factor): | ||
"""Schedule for nhwc f32 to f16 cast: nhwc layout""" | ||
sch = tir.Schedule(func, debug_mask="all") | ||
block_name = "CastF32F16" | ||
n_orig, h_orig, w_orig, c_orig = sch.get_loops(sch.get_block(block_name)) | ||
h_outer, h_inner = sch.split(h_orig, [None, h_split_factor]) | ||
w_outer, w_inner = sch.split(w_orig, [None, 4]) | ||
c_outer, c_inner = sch.split(c_orig, [None, 32]) | ||
w_inner_o, w_inner_i = sch.split(w_inner, [None, 2]) | ||
sch.reorder(n_orig, h_outer, w_outer, c_outer, h_inner, w_inner_o, c_inner, w_inner_i) | ||
sch.transform_layout(block_name, "A", in_layout) | ||
sch.transform_layout(block_name, block_name, out_layout) | ||
fused = sch.fuse(c_inner, w_inner_i) | ||
sch.vectorize(fused) | ||
return sch | ||
|
||
|
||
def cast_f32_f16_stir_schedule_nc(func, in_layout, out_layout, c_split_factor): | ||
"""Schedule for nc f32 to f16 cast: nc layout""" | ||
sch = tir.Schedule(func, debug_mask="all") | ||
block_name = "CastF32F16" | ||
_, c_orig = sch.get_loops(sch.get_block(block_name)) | ||
_, c_inner = sch.split(c_orig, [None, c_split_factor]) | ||
sch.transform_layout(block_name, "A", in_layout) | ||
sch.transform_layout(block_name, block_name, out_layout) | ||
sch.vectorize(c_inner) | ||
return sch | ||
|
||
|
||
def cast_f32_f16_schedule(cast_func, in_layout_str, out_layout_str): | ||
"""Schedule for f32 to f16 cast: top level function""" | ||
f32_layout_transform_func, split_factor = get_layout_transform_for_f32(in_layout_str) | ||
f16_layout_transform_func = get_layout_transform_fn(out_layout_str) | ||
if out_layout_str == "nhwc-8h2w32c2w-2d": | ||
return cast_f32_f16_stir_schedule_nhwc( | ||
cast_func, f32_layout_transform_func, f16_layout_transform_func, split_factor | ||
) | ||
if out_layout_str == "nc-1024c-2d": | ||
return cast_f32_f16_stir_schedule_nc( | ||
cast_func, f32_layout_transform_func, f16_layout_transform_func, split_factor | ||
) | ||
raise RuntimeError(f"Unexpected input_layout, output_layout '{in_layout_str, out_layout_str}'") |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.