Convert OpenAI's Whisper speech recognition models to ONNX format for deployment on Magic Leap 2 and other platforms.
- Convert Whisper models to ONNX format
- Support for all Whisper model sizes
- Character map generation for token decoding
- Optimized for real-time inference
- Unity/Magic Leap 2 deployment support
git clone git@github.com:miladnasiri/Whisper-ONNX-conver.git
cd Whisper-ONNX-conver
python -m venv venv
source venv/bin/activate
pip install -r requirements.txt
from src.converter import WhisperONNXConverter
converter = WhisperONNXConverter("tiny")
converter.load_model()
converter.convert_to_onnx("whisper_tiny.onnx")
from src.tokenizer_utils import WhisperTokenizer
tokenizer = WhisperTokenizer("tiny")
tokenizer.save_char_map("whisper_char_map.json")
python test_existing_model.py
python check_char_map.py
- Input shape:
[batch_size, 80, n_frames]
- Output shape:
[1, 1500, 384]
- Character map size: 50,363 tokens
Milad Nasiri