Implementation of the FastGAN model in the paper:
Towards Faster and Stabilized GAN Training for High-fidelity Few-shot Image Synthesis.
See here for the official Pytorch implementation.
- Python 3.8
- Tensorfow 2.8
- Tensorflow Addons 0.16
Use --file_pattern=<file_pattern>
to specify the dataset path and file pattern.
python train.py --file_pattern=./dataset_path/*.png
Use --main_dir=<main_dir>
to specify the model directory name.
python generate.py --main_dir=<main_dir>
Adjust hyperparameters in the hparams.py
file.
Run tensorboard --logdir ./
.
Code:
- This model depends on other files that may be licensed under different open source licenses.
- Self-Supervised GAN uses Differentiable Augmentation. Under BSD 2-Clause "Simplified" License.
Implementation notes:
- Self-supervised discriminator with a single reconstruction decoder and perceptual loss.
- Hinge loss GAN and WGAN gradient penalty.
- Skip-layer excitation generator.
- Orthogonal initialization.
- Adam with β1 = 0.5 and β2 = 0.99.
- Batch size = 8.
MIT