Skip to content

Commit

Permalink
Merge pull request #190 from PingqiLi/main
Browse files Browse the repository at this point in the history
update readme with supported mindspore version for mindaudio
  • Loading branch information
Ash-Lee233 authored Jul 16, 2024
2 parents 19eb4cd + 2378249 commit 6d1072b
Show file tree
Hide file tree
Showing 11 changed files with 480 additions and 110 deletions.
16 changes: 9 additions & 7 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -14,19 +14,21 @@
[Installation](#installation) |
[Get Started](#get-started)

English | [中文](README_CN.md)

</div>

## Introduction

MindAudio is a toolbox of audio models and algorithms based on [MindSpore](https://www.mindspore.cn/). It provides a series of API for common audio data processing,data enhancement,feature extraction, so that users can preprocess data conveniently. Also provides examples to show how to build audio deep learning models with mindaudio.

The following is the corresponding `mindaudio` versions and supported `mindspore` versions.
| mindaudio | mindspore |
| :--: | :--: |
| master | master |
| 0.4 | 2.3.0 |
| 0.3 | 2.2.10 |
| 0.1.x | 1.8&1.9 |

| `mindspore` | `mindaudio` | `tested hardware` |
|--------------|-------------|------------------------------|
| `master` | `master` | `ascend 910*` |
| `2.3.0` | `0.4` | `ascend 910*` |
| `2.2.10` | `0.3` | `ascend 910` & `ascend 910*` |

### data processing

Expand Down Expand Up @@ -64,7 +66,7 @@ python setup.py install

###

mindaudio provides a series of commonly used audio data processing apis, which can be easily invoked for data analysis and feature extraction.
MindAudio provides a series of commonly used audio data processing apis, which can be easily invoked for data analysis and feature extraction.

```python
>>> import mindaudio.data.io as io
Expand Down
114 changes: 114 additions & 0 deletions README_CN.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
<div align="center">


# MindAudio

[![GitHub Workflow Status](https://img.shields.io/github/actions/workflow/status/mindspore-lab/mindaudio/ut_test.yaml)
![GitHub issues](https://img.shields.io/github/issues/mindspore-lab/mindaudio)
![GitHub pull requests](https://img.shields.io/github/issues-pr/mindspore-lab/mindaudio)
![GitHub](https://img.shields.io/github/license/mindspore-lab/mindaudio)](<img alt="GitHub" src="https://img.shields.io/github/license/mindspore-lab/mindaudio">)
[![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black)
[![Imports: isort](https://img.shields.io/badge/%20imports-isort-%231674b1?style=flat&labelColor=ef8336)](https://pycqa.github.io/isort/)

[Introduction](#introduction) |
[Installation](#installation) |
[Get Started](#get-started)

[English](README.md) | 中文
</div>

## 介绍
MindAudio 是基于 [MindSpore](https://www.mindspore.cn/) 的音频模型和算法工具箱。它提供了一系列用于常见音频数据处理、数据增强、特征提取的 API,方便用户对数据进行预处理。此外,它还提供了一些示例,展示如何利用 mindaudio 建立音频深度学习模型。

下表显示了相应的 `mindaudio` 版本和支持的 `mindspore` 版本。

| `mindspore` | `mindaudio` | `tested hardware` |
|--------------|-------------|------------------------------|
| `master` | `master` | `ascend 910*` |
| `2.3.0` | `0.4` | `ascend 910*` |
| `2.2.10` | `0.3` | `ascend 910` & `ascend 910*` |

### 数据处理


```python
# read audio
>>> import mindaudio.data.io as io
>>> audio_data, sr = io.read(data_file)
# feature extraction
>>> import mindaudio.data.features as features
>>> feats = features.fbanks(audio_data)
```

## 安装

### Pypi安装

MindAudio的发布版本可以通过`PyPI`安装:

```shell
pip install mindaudio
```

### 源码安装
最新版本的 MindAudio 可以通过如下方式安装:

```shell
git clone https://github.com/mindspore-lab/mindaudio.git
cd mindaudio
pip install -r requirements/requirements.txt
python setup.py install
```

## 快速入门音频数据分析

###

MindAudio 提供了一系列常用的音频数据处理 APIs,可以轻松调用这些 APIs 进行数据分析和特征提取。

```python
>>> import mindaudio.data.io as io
>>> import mindaudio.data.spectrum as spectrum
>>> import numpy as np
>>> import matplotlib.pyplot as plt
# read audio
>>> audio_data, sr = io.read("./tests/samples/ASR/BAC009S0002W0122.wav")
# feature extraction
>>> n_fft = 512
>>> matrix = spectrum.stft(audio_data, n_fft=n_fft)
>>> magnitude, _ = spectrum.magphase(matrix, 1)
# display
>>> x = [i for i in range(0, 256*750, 256)]
>>> f = [i/n_fft * sr for i in range(0, int(n_fft/2+1))]
>>> plt.pcolormesh(x,f,magnitude, shading='gouraud', vmin=0, vmax=np.percentile(magnitude, 98))
>>> plt.title('STFT Magnitude')
>>> plt.ylabel('Frequency [Hz]')
>>> plt.xlabel('Time [sec]')
>>> plt.show()
```

结果如图:

![image-20230310165349460](https://raw.githubusercontent.com/mindspore-lab/mindaudio/main/tests/result/stft_magnitude.png)


## 贡献方式
我们感谢开发者用户的所有贡献,一起让 MindAudio 变得更好。
贡献指南请参考[CONTRIBUTING.md](CONTRIBUTING.md)

## 许可证

MindAudio 遵循[Apache License 2.0](LICENSE)开源协议.

## 引用

如果你觉得 MindAudio 对你的项目有帮助,请考虑引用:

```latex
@misc{MindSpore Audio 2022,
title={{MindSpore Audio}:MindSpore Audio Toolbox and Benchmark},
author={MindSpore Audio Contributors},
howpublished = {\url{https://github.com/mindspore-lab/mindaudio}},
year={2022}
}
```
8 changes: 4 additions & 4 deletions examples/ECAPA-TDNN/readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -118,9 +118,9 @@ python speaker_verification_cosine.py --need_generate_data=False


## **性能表现**
- tested on ascend 910 with 8 cards.
- tested on ascend 910 with 8 cards.
- total training time : 24hours

| model | eer with s-norm | eer s-norm | config| weights|
| :-: | :-: | :-: | :-: | :-:|
| ECAPA-TDNN | 1.50% | 1.70% | [yaml](https://github.com/mindsporelab/mindaudio/blob/main/example/ECAPA-TDNN/ecapatdnn.yaml) | [weights](https://download.mindspore.cn/toolkits/mindaudio/ecapatdnn/ecapatdnn_vox12.ckpt) |
| model | eer with s-norm | eer s-norm | config | weights |
|:----------:|:---------------:|:----------:|:---------------------------------------------------------------------------------------------:|:------------------------------------------------------------------------------------------:|
| ECAPA-TDNN | 1.50% | 1.70% | [yaml](https://github.com/mindsporelab/mindaudio/blob/main/example/ECAPA-TDNN/ecapatdnn.yaml) | [weights](https://download.mindspore.cn/toolkits/mindaudio/ecapatdnn/ecapatdnn_vox12.ckpt) |
2 changes: 1 addition & 1 deletion examples/ECAPA-TDNN/voxceleb_prepare.py
Original file line number Diff line number Diff line change
Expand Up @@ -86,7 +86,7 @@ def prepare_voxceleb(
):
"""
Prepares the csv files for the Voxceleb1 or Voxceleb2 datasets.
Please follow the instructions in the README.md file for
Please follow the instructions in the readme.md file for
preparing Voxceleb2.
"""

Expand Down
111 changes: 66 additions & 45 deletions examples/conformer/readme.md
Original file line number Diff line number Diff line change
@@ -1,86 +1,88 @@
# 使用conformer进行语音识别
# Using Conformer for Speech Recognition

> [Conformer: Convolution-augmented Transformer for Speech Recognition](https://arxiv.org/abs/2005.08100)
## Introduction

## 介绍
Conformer is a model that combines transformers and CNNs to model both local and global dependencies in audio sequences. Currently, models based on transformers and convolutional neural networks (CNNs) have achieved good results in automatic speech recognition (ASR). Transformers can capture long-sequence dependencies and global interactions based on content, while CNNs can effectively utilize local features. Therefore, a convolution-enhanced transformer model called Conformer has been proposed for speech recognition, showing performance superior to both transformers and CNNs. The current version supports using the Conformer model for training/testing and inference on the AISHELL-1 dataset on ascend NPU and GPU.

conformer是将一种transformer和cnn结合起来,对音频序列进行局部和全局依赖都进行建模的模型。目前基于transformer和卷积神经网络cnn的模型在ASR上已经达到了较好的效果,Transformer能够捕获长序列的依赖和基于内容的全局交互信息,CNN则能够有效利用局部特征,因此针对语音识别问题提出了卷积增强的transformer模型,称为conformer,模型性能优于transformer和cnn。目前提供版本支持在NPU和GPU上使用[conformer](https://arxiv.org/pdf/2102.06657v1.pdf)模型在aishell-1数据集上进行训练/测试和推理。
### Model Structure

### 模型结构
The overall structure of Conformer includes SpecAug, ConvolutionSubsampling, Linear, Dropout, and ConformerBlocks×N, as shown in the structure diagram below.

Conformer整体结构包括:SpecAug、ConvolutionSubsampling、Linear、Dropout、ConformerBlocks×N,可见如下结构图。
- ConformerBlock Structure (N of this structure): Feed Forward Module, Multi-Head Self Attention Module, Convolution Module, Feed Forward Module, Layernorm. Each module is preceded by a Layernorm and followed by a Dropout, with residual connections linking the input data directly.

- ConformerBlock结构(N个该结构):Feed Forward Module、Multi-Head Self Attention Module、Convolution Module、Feed Forward Module、Layernorm。其中每个Module都是前接一个Layernorm后接一个Dropout,且都有残差链连接,残差数据为输入数据本身。

- 马卡龙结构:可以看到ConformerBlock神似马卡龙结构,即两个一样的Feed Forward Module中间夹了Multi-Head Self Attention Module和Convolution。
- Macaron Structure: The ConformerBlock resembles a macaron structure, with a Multi-Head Self Attention Module and Convolution Module sandwiched between two identical Feed Forward Modules.

![image-20230310165349460](https://raw.githubusercontent.com/mindspore-lab/mindaudio/main/tests/result/conformer.png)



## Usage Steps

### 1. 数据集准备
### 1. Dataset Preparation

以aishell数据集为例,mindaudio提供下载、生成统计信息的脚本(包含wav文件地址信息以及对应中文信息),执行此脚本会生成train.csvdev.csvtest.csv三个文件。
Take the AISHELL dataset as an example. MindAudio provides scripts to download and generate statistical information (including the addresses of wav files and corresponding Chinese information). Executing this script will generate three files: train.csv, dev.csv, and test.csv.

```shell
# data_path为存放数据的地址
# data_path is the path where the data is stored
python mindaudio/data/aishell.py --data_path "/data" --download False
```

如需下载数据, --download True
To download data, set --download parameter to be True.

### 2. 数据预处理
### 2. Data Preprocessing

#### 文字部分
#### Text Part

根据aishell提供的aishell_transcript_v0.8.txt,生成逐字的编码文件,每个字对应一个id,输出包含编码信息的文件:lang_char.txt
Based on the aishell_transcript_v0.8.txt provided by AISHELL, generate a character-by-character encoding file where each character corresponds to an ID, outputting a file containing encoding information: lang_char.txt.

```shell
cd mindaudio/utils
python text2token.py -s 1 -n 1 "data_path/data_aishell/transcript/aishell_transcript_v0.8.txt" | cut -f 2- -d" " | tr " " "\n" \
| sort | uniq | grep -a -v -e '^\s*$' | awk '{print $0 " " NR+1}' >> ${/data_path/lang_char.txt}
```

#### 音频部分
#### Audio Part

本模型使用了全局cmvn,为提高模型训练效率,在训练前会对数据的特征进行统计,生成包含统计信息的文件:global_cmvn.json
This model uses global CMVN. To improve training efficiency, statistical features of the data are computed before training, generating a file with the statistical information: global_cmvn.json.

```shell
cd examples/conformer
python compute_cmvn_stats.py --num_workers 16 --train_config conformer.yaml --in_scp data_path/train.csv --out_cmvn data_path/global_cmvn
```

注意:--num_workers可根据训练设备的核数进行调整
Note: --num_workers can be adjusted according to the number of cores on the training device.

### 3. 开始训练(默认使用Ascend 910)
### 3. Training

#### 单卡
#### Single-Card Training (by default using Ascend 910)
```shell
cd examples/conformer
# Standalone training
python train.py --config_path ./conformer.yaml
```

注意:

#### 8卡训练
Note: Use Ascend device by default.

需配置is_distributed参数为True
#### Multi-Card Training on Ascend

This example uses 8 ascend NPUs.
```shell
# Distribute_training
mpirun -n 8 python train.py --config_path ./conformer.yaml --is_distributed True
# Distribute training
mpirun -n 8 python train.py --config_path ./conformer.yaml
```

如果脚本是由root用户执行的,必须在mpirun中添加——allow-run-as-root参数,如下所示:
Note:
When using multi-card training, ensure that is_distributed in the YAML file is set to True. This can be configured by modifying the YAML file or adding parameters on the command line.

```shell
mpirun --allow-run-as-root -n 8 python train.py --config_path ./conformer.yaml
# Distribute_training
mpirun -n 8 python train.py --config_path ./conformer.yaml --is_distributed True
```
If the script is executed by the root user, the `--allow-run-as-root` parameter must be added to `mpirun`.


启动训练前,可更改环境变量设置,更改线程数以提高运行速度。如下所示:
Before starting training, you can set environment variable to adjust the number of threads for faster execution as shown below:

```shell
export OPENBLAS_NUM_THREADS=1
Expand All @@ -89,28 +91,47 @@ export MKL_NUM_THREADS=1



### 4.评估
### 4. Evaluation

我们提供ctc greedy search、ctc prefix beam search、attention decoder、attention rescoring四种解码方式,可在yaml配置文件中对解码方式进行修改。

执行脚本后将生成包含预测结果的文件为result.txt
Four decoding methods are provided: CTC greedy search, CTC prefix beam search, attention decoder, and attention rescoring. The decoding method can be modified in the YAML configuration file.

Executing the script will generate a file containing the prediction results: result.txt.
```shell
# by default using ctc greedy search decoder
python predict.py --config_path ./conformer.yaml

# using ctc prefix beam search decoder
python predict.py --config_path ./conformer.yaml --decode_mode ctc_prefix_beam_search

# using attention decoder
python predict.py --config_path ./conformer.yaml --decode_mode attention

# using attention rescoring decoder
python predict.py --config_path ./conformer.yaml --decode_mode attention_rescoring
```



### **性能表现**
## Model Performance
The training config can be found in the [conformer.yaml](https://github.com/mindspore-lab/mindaudio/blob/main/examples/conformer/conformer.yaml).

Performance tested on ascend 910 (8p) with graph mode:

| model | decoding mode | CER |
|-----------|------------------------|--------------|
| conformer | ctc greedy search | 5.35 |
| conformer | ctc prefix beam search | 5.36 |
| conformer | attention decoder | comming soon |
| conformer | attention rescoring | 4.95 |
- [weights](https://download-mindspore.osinfra.cn/toolkits/mindaudio/conformer/conformer_avg_30-548ee31b.ckpt) can be downloaded here.

* Feature info: using fbank feature, cmvn, online speed perturb
* Training info: lr 0.001, acc_grad 1, 240 epochs, ascend 910*8
* Decoding info: ctc_weight 0.3, average_num 30
* Performance result: total_time 11h17min, 8p, using hccl_tools.
---
Performance tested on ascend 910* (8p) with graph mode:

| model | decoding mode | CER |
| --------- | ---------------------- | ---- |
| conformer | ctc greedy search | 5.05 |
| conformer | ctc prefix beam search | 5.05 |
| conformer | attention decoder | 5.00 |
| conformer | attention rescoring | 4.73 |
| model | decoding mode | CER |
|-----------|------------------------|--------------|
| conformer | ctc greedy search | 5.62 |
| conformer | ctc prefix beam search | 5.62 |
| conformer | attention decoder | comming soon |
| conformer | attention rescoring | 5.12 |
- [weights](https://download-mindspore.osinfra.cn/toolkits/mindaudio/conformer/conformer_avg_30-692d57b3-910v2.ckpt) can be downloaded here.
Loading

0 comments on commit 6d1072b

Please sign in to comment.