Skip to content

minlee077/UEVD_public

 
 

Repository files navigation

UDUTV(ECCV 2022, Oral presentation)

This repository is for the ECCV 2022 paper, "Event-guided Deblurring of Unknown Exposure Time Videos".

[ArXiv] [ECCV2022] [Supp] [Oral(YouTube)] [Project]

Demo videos on real world blurry videos

real_blur_045_resized

Table of Contents

  1. Color-DVS
  2. Installation
  3. Test
  4. Test_Custom
  5. Training
  6. Results
  7. Reference
  8. Contact

Color-DVS

The first public event-based deblurring dataset. Our dataset contain diverse scene including real-world event using color-DAVIS camera.

You can download the raw-data(collected frame and events) from this google drive link

Also, you can download the processed data for handling unknown exposure time videos link

Installation

This code was tested with:

  • pytorch 1.2.0
  • CUDA 10.2
  • Python 3.7
  • Ubuntu 18.04 using TITAN RTX GPU
pip install -r requirements.txt
bash install.sh

Test

python test_deblur_dvs.py --dataset 'dvs'

Training

python train_deblur_dvs.py --dataset 'dvs' --epochs 21 --batch_size 2 \
--test_batch_size 1 --use_multigpu True

Results

real_blur_045_resized

real_blur_045_resized

Reference

Taewoo Kim, Jeongmin Lee, Lin Wang, and Kuk-Jin Yoon" Event-guided Deblurring of Unknown Exposure Time Videos", In ECCV, 2022.

BibTeX

@article{kim2021event,
  title={Event-guided Deblurring of Unknown Exposure Time Videos},
  author={Kim, Taewoo and Lee, Jungmin and Wang, Lin and Yoon, Kuk-Jin},
  journal={arXiv preprint arXiv:2112.06988},
  year={2021}
}

Contact

If you have any question, please send an email me(intelpro@kaist.ac.kr)

License

The project codes and datasets can be used for research and education only.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 90.6%
  • Cuda 7.6%
  • C++ 1.1%
  • Other 0.7%