Skip to content
This repository has been archived by the owner on Jan 14, 2025. It is now read-only.
/ ahd2fhir Public archive

A REST service for mapping text analysis results from Averbis Health Discovery to FHIR resources.

License

Notifications You must be signed in to change notification settings

miracum/ahd2fhir

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

ahd2fhir

Latest Version License OpenSSF Scorecard SLSA 3

Creates FHIR resources from Averbis Health Discovery NLP Annotations.

Run

Set the required environment variables:

export AHD_URL=http://host.docker.internal:9999/health-discovery
export AHD_API_TOKEN=1bbd10e7a18f01fd51d03cb81d505e0c6cfdcd73b0fc98e8300592afa4a90148
export AHD_PROJECT=test
export AHD_PIPELINE=discharge
export IMAGE_TAG=latest # see https://github.com/miracum/ahd2fhir/releases for immutable tags

Launch the ahd2fhir service which is exposed on port 8080 by default:

docker compose up -d

Send a FHIR DocumentReference to the service and receive a bundle of FHIR resources back:

curl -X POST \
     -H "Content-Type: application/fhir+json" \
     -d @tests/resources/fhir/documentreference.json \
     http://localhost:8080/fhir/\$analyze-document

The service supports both individual FHIR DocumentReference resources as well as Bundles of them.

You can also access the Swagger API documentation at http://localhost:8080/docs.

Configuration

Required Settings

Environment variable Description Default
AHD_URL URL of the AHD installation. Should not end with a trailing '/'. ""
AHD_API_TOKEN An API token to access the AHD REST API. ""
AHD_USERNAME Username for username+password based authentication against the API ""
AHD_PASSWORD Password for username+password based authentication against the API ""
AHD_ENSURE_PROJECT_IS_CREATED_AND_PIPELINE_IS_STARTED If enabled, attempt to create the specified project and start the pipeline. Requires the use of username+password for auth. false
AHD_PROJECT Name of the AHD project. This needs to be created before ahd2fhir is started. ""
AHD_PIPELINE Name of the AHD pipeline. This needs to be created before ahd2fhir is started. ""

Kafka Settings

Most relevant Kafka settings. See config.py for a complete list. As the settings are composed of pydantic settings, use the corresponding env_prefix value to override defaults.

Environment variable Description Default
KAFKA_ENABLED Whether to enable support for reading resources from Apache Kafka. false
KAFKA_BOOTSTRAP_SERVERS Host and port of the Kafka bootstrap servers. localhost:9094
KAFKA_SECURITY_PROTOCOL The security protocol used to connect with the Kafka brokers. PLAINTEXT
KAFKA_CONSUMER_GROUP_ID The Kafka consumer group id. ahd2fhir
KAFKA_INPUT_TOPIC The input topic to read FHIR DocumentReferences or Bundles thereof from. fhir.documents
KAFKA_OUTPUT_TOPIC The output topic to write the extracted FHIR resources to. fhir.nlp-results

Development

Install required packages

pip install -r requirements-dev.txt

Start required services for development

Starts an AHD server:

docker login registry.averbis.com -u "Username" -p "Password"
docker compose -f compose.dev.yml up

Starts both AHD and Kafka and starts constantly filling a fhir.documents topic with sample DocumentReference resources.

docker compose -f compose.dev.yml --profile=kafka up

Manually create an AHD project with the default pipeline and get an API token for development

Note If you set AHD_ENSURE_PROJECT_IS_CREATED_AND_PIPELINE_IS_STARTED=true, ahd2fhir will attempt to create the necessary project and run the pipeline on startup. You won't need to manually do the steps below.

  1. Open AHD on http://localhost:9999/health-discovery/#/login and login as admin with password admin.
  2. Click on Project Administration -> Create Project.
  3. Set Name to test.
  4. Click on the newly created project test
  5. Click on Pipeline Configuration
  6. Select the discharge pipeline and click on Start Pipeline
  7. In the top-right corner, click on admin -> Manage API Token
  8. Click on Generate followed by Copy to clipboard
  9. Paste the new API token in the .env.development file as the value for the AHD_API_TOKEN

Run using FastAPI live reload

export PYTHONPATH=${PWD}
uvicorn --env-file=.env.development --app-dir=ahd2fhir main:app --reload --log-level=debug

Note To enable reading FHIR DocumentReferences from a Kafka topic during development, make sure to set the env var KAFKA_ENABLED=true

Uses the environment configuration from the .env.development file. You will need to modify the AHD_ env vars for your local deployment.

Build and run using a locally-build image

Note the use of host.docker.internal so the running container can still access the version of AHD launched via compose.dev.yml. Also use your own manually created API-TOKEN below.

docker build -t ahd2fhir:local .
docker run \
    --rm -it -p 8081:8080 \
    --network=ahd2fhir_default \
    -e AHD_URL=http://health-discovery-hd:8080/health-discovery \
    -e AHD_API_TOKEN=<insert API-TOKEN here> \
    -e AHD_PROJECT=test \
    -e AHD_PIPELINE=discharge \
    -e AHD_ENSURE_PROJECT_IS_CREATED_AND_PIPELINE_IS_STARTED=true \
    -e KAFKA_ENABLED=true \
    -e KAFKA_BOOTSTRAP_SERVERS=kafka:9092 \
    ahd2fhir:local

Test

pytest --cov=ahd2fhir

If the snapshot tests fail, you may need to update them using:

pytest --snapshot-update

but make sure the changed snapshots are actually still valid! You can use the Firely Terminal to do so:

Setup pre-commit hooks

pre-commit install
pre-commit install --hook-type commit-msg

Use as library

Installation

pip install git+https://github.com/miracum/ahd2fhir@master

Usage

import json
from fhir.resources.R4B.documentreference import DocumentReference
from fhir.resources.R4B.reference import Reference
from ahd2fhir.mappers import ahd_to_condition

with open('tests/resources/ahd/payload_1.json') as json_resource:
    ahd_payload = json.load(json_resource)

# Create Patient reference and DocumentReference
pat = FHIRReference(**{'reference': f'Patient/f1234'})
doc = DocumentReference.construct()
doc.subject = pat
doc.date = '2020-05-14'

conditions  = ahd_to_condition.get_fhir_condition(ahd_payload, doc)

About

A REST service for mapping text analysis results from Averbis Health Discovery to FHIR resources.

Resources

License

Security policy

Stars

Watchers

Forks

Packages