https://www.kaggle.com/c/cassava-leaf-disease-classification/leaderboard
We got 26th prize.
This is summary and codes.
・5fold StratifiedKFold
・Using 2020 data
・Cretate predicted train data labels as output file
・5fold StratifiedKFold
・Using 2020 data
Create new train labels by 1st stage output. Idea is below.
https://www.kaggle.com/c/plant-pathology-2020-fgvc7/discussion/154056
・img_size = 384 x 384
・4x TTA
・img_size = 512 x 512
・4x TTA
・img_size = 512 x 512
・4x TTA
・Pulic Score 0.9063
・Private Score 0.9010
def get_train_transforms():
return Compose([
RandomResizedCrop(CFG['img_size'], CFG['img_size']),
Transpose(p=0.5),
HorizontalFlip(p=0.5),
VerticalFlip(p=0.5),
ShiftScaleRotate(p=0.5),
HueSaturationValue(hue_shift_limit=0.2, sat_shift_limit=0.2, val_shift_limit=0.2, p=0.5),
RandomBrightnessContrast(brightness_limit=(-0.1,0.1), contrast_limit=(-0.1, 0.1), p=0.5),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0),
CoarseDropout(p=0.5),
Cutout(p=0.5),
ToTensorV2(p=1.0),
], p=1.)
def get_valid_transforms():
return Compose([
CenterCrop(CFG['img_size'], CFG['img_size'], p=1.),
Resize(CFG['img_size'], CFG['img_size']),
Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225], max_pixel_value=255.0, p=1.0),
ToTensorV2(p=1.0),
], p=1.)
TaylorCrossEntropyLoss
CosineAnnealingWarmRestarts
・Loss function(BiTemperedLogisticLoss/FocalCosineLoss/CrossEntropyLoss)
・LRscheduler(GradualWarmupScheduler/OneCycleLR/LambdaLR)
・Additional data(2019)