https://www.kaggle.com/c/seti-breakthrough-listen/leaderboard
We got 92th prize.
This is summary and codes.
・5fold StratifiedKFold
・Using new data(3ch)
・img_size = 512 x 512
・optimizer = sam
・epoch = 20
・scheduler = GradualWarmupScheduler + CosineAnnealingLR
・img_size = 512 x 512
・optimizer = AdamP
・epoch = 17
・scheduler = GradualWarmupScheduler + CosineAnnealingLR
・img_size = 512 x 512
・optimizer = Ranger
・epoch = 15
・scheduler = ReduceLROnPlateau
・img_size = 512 x 512
・optimizer = AdamP
・epoch = 15
・scheduler = GradualWarmupScheduler + CosineAnnealingLR
I use weight optimazation to maximize cv.
cv = 0.8824
lb = 0.77510
def get_transforms(*, data):
if data == 'train':
return A.Compose([
A.Resize(CFG.size, CFG.size, p=1.0),
A.HorizontalFlip(p=0.5),
A.VerticalFlip(p=0.5),
A.ShiftScaleRotate(rotate_limit=0, p=0.25),
A.OneOf([
A.MotionBlur(p=1.0),
A.GaussianBlur(p=1.0),
A.GaussNoise(p=1.0),
], p=0.2),
A.OneOf([
A.OpticalDistortion(distort_limit=1.0, p=1.0),
A.GridDistortion(num_steps=5, distort_limit=1.0, p=1.0),
A.ElasticTransform(alpha=3, p=1.0),
], p=0.2),
A.IAASharpen(p=0.25),
A.Cutout(p=0.3),
ToTensorV2(),
])
elif data == 'valid':
return A.Compose([
A.Resize(CFG.size, CFG.size),
ToTensorV2(),
])
・mixup(alpha=0.5)
BCEWithlogitsloss(pos_weight=1.5)
・Loss function(FocalCosineLoss/CrossEntropyLoss)
・LRscheduler(OneCycleLR/LambdaLR)
・Additional data(old)
・cutmix