We got 829th prize.
This is summary and codes.
・img_size = 512 x 512
・activation = silu→mish
・optimizer = ranger
・loss = CurricularFace
・img_size = 512 x 512
・activation = silu→mish
・optimizer = ranger
・loss = CurricularFace
・img_size = 512 x 512
・activation = relu→mish
・optimizer = ranger
・loss = CurricularFace
・img_size = 512 x 512
・activation = relu→mish
・optimizer = ranger
・loss = ArcFace
・pooling = GeM
・Pulic Score 0.9063
・Private Score 0.9010
def get_train_transforms():
return albumentations.Compose(
[ albumentations.Resize(Config.IMG_SIZE,Config.IMG_SIZE,always_apply=True),
albumentations.HorizontalFlip(p=0.5),
albumentations.VerticalFlip(p=0.5),
albumentations.Rotate(limit=120, p=0.8),
albumentations.RandomBrightness(limit=(0.09, 0.6), p=0.5),
albumentations.Normalize(mean = Config.MEAN, std = Config.STD),
ToTensorV2(p=1.0),
]
CosineAnnealingWarmRestarts
・input = Indo → English
・optimizer = Adam
・loss = ArcFace
・optimizer = Adam
・loss = ArcFace
・input = English → Indo
・optimizer = Adam
・loss = ArcFace
・model: Seresnexts、other resnests、other Efficientnets、other NFnets、regnets
・loss: AdaCos、Focalloss
・activation: relu→mish、silu→mish
・optimizer: SGD、adamw
・augmentation: Cutout、RandAugment、Autoaugment
・other: AMP、 emmbedding concat