Skip to content

mlf-core/machine_learning_determinism_evaluation

Repository files navigation

Nextflow Machine Learning

Proof of concept for running deep learning on GPUs using nextflow

Training a simple 2d convolutional neural network (2d conv, 2d conv, dropout (0.25), dropout (0.5), fc, fc) implemented in Pytorch on MNIST on the CPU or GPU.

Requirements

  • Docker
  • Cuda
  • Nvidia-container-toolkit
  • A Cuda enabled GPU
  • Nextflow
  • openjdk 8 < x < 12

Building the docker images locally

docker build -f Dockerfile_mlflowcore_base -t mlflowcore/base:1.0.0 .
docker build -f Dockerfile_pytorch -t mlflowcore/pytorch:dev .
docker build -f Dockerfile_tensorflow -t mlflowcore/tensorflow:dev .
docker build -f Dockerfile_xgboost -t mlflowcore/xgboost:dev .

Running on your chosen platform

Choose one of:

  1. 'all_gpu' for all GPUs
  2. 'single_gpu' for a single GPU
  3. 'cpu' for running on CPU

Running with docker:

nextflow run main.nf --platform all_gpu/single_gpu/cpu -with-docker --tensorflow/pytorch/xgboost

Alternative you can use singularity to train your model:

nextflow run main.nf --platform all_gpu/single_gpu/cpu -with-singularity --tensorflow/pytorch/xgboost

Note that to run xgboost on the CPU you also need to use the parameter --no_cuda.

Running multiple GPUs on the local Dask cluster using XGBoost:

nextflow run main.nf -with-docker --platform all_gpu --xgboost --dataset boston --epochs 1000 --dask --n_gpus 2

About

GPU deterministic machine learning with Nextflow

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 3

  •  
  •  
  •