Skip to content

A stable adaptive branchless partitioning comparison sort.

License

Notifications You must be signed in to change notification settings

mlochbaum/fluxsort

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

27 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Intro

This document describes a partitioning stable adaptive comparison-based sort named fluxsort. Benchmarks and a visualization are available at the bottom.

Analyzer

Fluxsort starts out with an analyzer that detects fully sorted arrays and sorts reverse order arrays using n comparisons. It also obtains a measure of presortedness and switches to quadsort if the array is less than 25% random.

Partitioning

Partitioning is performed in a top-down manner similar to quicksort. Fluxsort obtains the pseudomedian of 9 for partitions smaller than 1024 elements, and the pseudomedian of 15 otherwise. The median element obtained will be referred to as the pivot. Partitions that grow smaller than 24 elements are sorted with quadsort.

After obtaining a pivot the array is parsed from start to end. Elements smaller than the pivot are copied in-place to the start of the array, elements greater than the pivot are copied to swap memory. The partitioning routine is called recursively on the two partitions in main and swap memory.

Recursively partitioning through both swap and main memory is accomplished through the ptx pointer, which despite being simple in implementation is likely a novel technique since the logic behind it is a bit of a brain-twister.

Worst case handling

To avoid run-away recursion fluxsort switches to quadsort for both partitions if one partition is less than 1/16th the size of the other partition. On a distribution of random unique values the chance of a false positive is 1 in 65,536 for the pseudomedian of 9 and 1 in 16,777,216 for the pseudomedian of 15.

Combined with the analyzer fluxsort starts out with this makes the existence of killer patterns unlikely, other than a 2x performance slowdown by triggering the use of quadsort prematurely.

Branchless optimizations

Fluxsort uses a branchless comparison optimization similar to the method described in "BlockQuicksort: How Branch Mispredictions don't affect Quicksort" by Stefan Edelkamp and Armin Weiss.

Median selection uses a novel branchless comparison technique that selects the pseudomedian of 9 using between 8 and 12 (10.66 average) comparisons, and the pseudomedian of 15 using between 14 and 25 (21.33 average) comparisons.

These optimizations do not work as well when the comparisons themselves are branched and the largest performance increase is on 32 and 64 bit integers.

Memory

Fluxsort allocates n elements of swap memory, which is shared with quadsort. Recursion requires log n stack memory.

Data Types

The C implementation of fluxsort supports long doubles and 8, 16, 32, and 64 bit data types. By using pointers it's possible to sort any other data type, like strings.

Interface

Fluxsort uses the same interface as qsort, which is described in man qsort.

Big O

                 ┌───────────────────────┐┌───────────────────────┐
                 │comparisons            ││swap memory            │
┌───────────────┐├───────┬───────┬───────┤├───────┬───────┬───────┤┌──────┐┌─────────┐┌─────────┐
│name           ││min    │avg    │max    ││min    │avg    │max    ││stable││partition││adaptive │
├───────────────┤├───────┼───────┼───────┤├───────┼───────┼───────┤├──────┤├─────────┤├─────────┤
│fluxsort       ││n      │n log n│n log n││1      │n      │n      ││yes   ││yes      ││yes      │
├───────────────┤├───────┼───────┼───────┤├───────┼───────┼───────┤├──────┤├─────────┤├─────────┤
│quadsort       ││n      │n log n│n log n││1      │n      │n      ││yes   ││no       ││yes      │
├───────────────┤├───────┼───────┼───────┤├───────┼───────┼───────┤├──────┤├─────────┤├─────────┤
│quicksort      ││n      │n log n│n²     ││111      ││no    ││yes      ││no       │
├───────────────┤├───────┼───────┼───────┤├───────┼───────┼───────┤├──────┤├─────────┤├─────────┤
│introsort      ││n log n│n log n│n log n││111      ││no    ││yes      ││no       │
└───────────────┘└───────┴───────┴───────┘└───────┴───────┴───────┘└──────┘└─────────┘└─────────┘

Porting

People wanting to port fluxsort might want to have a look at twinsort, which is a simplified implementation of quadsort. Fluxsort itself is relatively simple.

Visualization

In the visualization below four tests are performed on 512 elements: Random, Generic, Random Half, and Ascending Tiles. Partitions greater than 48 elements use the pseudomedian of 15 to select the pivot.

fluxsort visualization

Benchmarks

The following benchmark was on WSL gcc version 7.5.0 (Ubuntu 7.5.0-3ubuntu1~18.04) using the wolfsort benchmark. The source code was compiled using g++ -O3 -w -fpermissive bench.c. The bar graph shows the best run out of 100 on 100,000 32 bit integers. Comparisons for fluxsort and std::stable_sort are inlined.

fluxsort vs stdstablesort

data table
Name Items Type Best Average Loops Samples Distribution
stablesort 100000 64 0.006123 0.006153 1 100 random order
fluxsort 100000 64 0.002477 0.002488 1 100 random order
Name Items Type Best Average Loops Samples Distribution
stablesort 100000 32 0.006008 0.006033 1 100 random order
fluxsort 100000 32 0.002329 0.002345 1 100 random order
stablesort 100000 32 0.000679 0.000683 1 100 ascending order
fluxsort 100000 32 0.000037 0.000037 1 100 ascending order
stablesort 100000 32 0.001375 0.001402 1 100 ascending saw
fluxsort 100000 32 0.000842 0.000854 1 100 ascending saw
stablesort 100000 32 0.003827 0.003853 1 100 generic order
fluxsort 100000 32 0.001129 0.001140 1 100 generic order
stablesort 100000 32 0.000901 0.000912 1 100 descending order
fluxsort 100000 32 0.000048 0.000048 1 100 descending order
stablesort 100000 32 0.001021 0.001035 1 100 descending saw
fluxsort 100000 32 0.000351 0.000365 1 100 descending saw
stablesort 100000 32 0.002034 0.002060 1 100 random tail
fluxsort 100000 32 0.001485 0.001492 1 100 random tail
stablesort 100000 32 0.003520 0.003542 1 100 random half
fluxsort 100000 32 0.002077 0.002088 1 100 random half
stablesort 100000 32 0.000922 0.000956 1 100 ascending tiles
fluxsort 100000 32 0.000674 0.000692 1 100 ascending tiles

The following benchmark was on WSL gcc version 7.4.0 (Ubuntu 7.4.0-1ubuntu1~18.04.1). The source code was compiled using gcc -O3 bench.c. The bar graph shows the best run out of 100 on 100,000 32 bit integers. Comparisons for fluxsort and qsort are not inlined. The stdlib qsort() in the benchmark is a mergesort variant.

fluxsort vs qsort

data table
Name Items Type Best Average Compares Samples Distribution
qsort 100000 64 0.009427 0.009512 1536491 100 random order
fluxsort 100000 64 0.004853 0.004862 2001035 100 random order
Name Items Type Best Average Compares Samples Distribution
qsort 100000 32 0.008472 0.008609 1536634 100 random order
fluxsort 100000 32 0.004117 0.004136 1990342 100 random order
qsort 100000 32 0.002017 0.002194 815024 100 ascending order
fluxsort 100000 32 0.000140 0.000140 99999 100 ascending order
qsort 100000 32 0.002817 0.002855 915019 100 ascending saw
fluxsort 100000 32 0.001514 0.001525 558847 100 ascending saw
qsort 100000 32 0.006382 0.006435 1532339 100 generic order
fluxsort 100000 32 0.002333 0.002349 1269601 100 generic order
qsort 100000 32 0.002450 0.002479 853904 100 descending order
fluxsort 100000 32 0.000150 0.000150 99999 100 descending order
qsort 100000 32 0.002826 0.002916 1063907 100 descending saw
fluxsort 100000 32 0.001171 0.001200 697343 100 descending saw
qsort 100000 32 0.003705 0.003751 1012028 100 random tail
fluxsort 100000 32 0.002251 0.002261 681125 100 random tail
qsort 100000 32 0.005447 0.005497 1200835 100 random half
fluxsort 100000 32 0.003728 0.003747 1889402 100 random half
qsort 100000 32 0.003873 0.004301 1209200 100 ascending tiles
fluxsort 100000 32 0.000999 0.001005 400063 100 ascending tiles

About

A stable adaptive branchless partitioning comparison sort.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 100.0%