Normal-Depth Diffusion Model: A Generalizable Normal-Depth Diffusion Model.
如果您熟悉中文,可以阅读中文版本的README。
Project page | Paper | YouTube
- Inference code.
- Training code.
- Pretrained model: ND, ND-MV, Albedo-MV.
- Pretrained model: ND-MV-VAE.
- Rendered Multi-View Image of Objaverse-dataset.
- 2023-12-25: We release the training dataset mvs_objaverse through Alibaba OSS Service. We also provide a convenient multi-threads script for fast downloading.
- 2023-12-11: Inference codes and pretrained models are released. We are working to improve ND-Diffusion Model, stay tuned!.
- This repository only includes the diffusion model and 2D image generation code of RichDreamer paper.
- For 3D Generation, please check RichDreamer.
- Install requirements using following scripts.
conda create -n nd
conda activate nd
pip install -r requirements.txt
pip install git+https://github.com/openai/CLIP.git
pip install git+https://github.com/CompVis/taming-transformers.git
pip install webdataset
pip install img2dataset
we also provide a dockerfile to build docker image.
sudo docker build -t mv3dengine_22.04:cu118 -f docker/Dockerfile .
- Download pretrained weights.
- ND: Normal-Depth Diffusion trained on Laion-2B
- ND-MV: MultiView Normal-Depth Diffusion Model
- Alebdo-MV: MultiView Depth-conditioned Albedo Diffusion Model
we also provide a script for download.
python tools/download_models/download_nd_models.py
we provide a script for sampling
sh demo_inference.sh
Or use the following detailed instructions:
# dmp solver
python ./scripts/t2i.py --ckpt $ckpt_path --prompt $prompt --dpm_solver --n_samples 2 --save_dir $save_dir
# plms solver
python ./scripts/t2i.py --ckpt $ckpt_path --prompt $prompt --plms --n_samples 2 --save_dir $save_dir
# ddim solver
python ./scripts/t2i.py --ckpt $ckpt_path --prompt $prompt --n_samples 2 --save_dir $save_dir
# nd-mv
python ./scripts/t2i_mv.py --ckpt_path $ckpt_path --prompt $prompt --num_frames 4 --model_name nd-mv --save_dir $save_dir
# nd-mv with VAE (coming soon)
python ./scripts/t2i_mv.py --ckpt_path $ckpt_path --prompt $prompt --num_frames 4 --model_name nd-mv-vae --save_dir $save_dir
python ./scripts/td2i_mv.py --ckpt_path $ckpt_path --prompt $prompt --depth_file $ depth_file --num_frames 4 --model_name albedo-mv --save_dir $save_dir
- Download Laion-2B-en-5-AES (Required to train ND model)
Download laion-2b dataset from parquet
Then, put parquet files into ./laion2b-dataset-5-aes
cd ./tools/download_dataset
bash ./download_2b-5_aes.sh
cd -
- Download Monocular Prior Models' Weight (Required to train ND model)
- NormalBae scannet.pt
- Midas3.1 dpt_beit_large512.pt
# move the scannet.pt to normalbae Prior Model
mv scannet.pt ./libs/ControlNet-v1-1-nightly/annotator/normalbae/scannet.pt
# move the dpt_beit_large512.pt to ./libs/omnidata_torch/pretrained_models/dpt_beit_large_512.pt
mv dpt_beit_large512.pt ./libs/omnidata_torch/pretrained_models/dpt_beit_large_512.pt
- Download rendered Multi-View image of Objaverse-dataset (Required to train ND-MV and Albedo-MV model)
- Download our rendered dataset using the prepared script
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/valid_paths_v4_cap_filter_thres_28.json
# Example: python ./scripts/data/download_objaverse.py ./mvs_objaverse ./valid_paths_v4_cap_filter_thres_28.json 50
python ./scripts/data/download_objaverse.py /path/to/savedata /path/to/valid_paths_v4_cap_filter_thres_28.json nthreads(eg. 10)
# set up a link if you save data anywhere
ln -s /path/to/savedata mvs_objaverse
# caption file
wget https://virutalbuy-public.oss-cn-hangzhou.aliyuncs.com/share/aigc3d/text_captions_cap3d.json
- Download pretrained-VAE weights pretrained on ImageNet.
- Modify the config file in
configs/autoencoder_normal_depth/autoencoder_normal_depth.yaml
, setmodel.ckpt_path=/path/to/pretained-VAE weights
# training VAE datasets
bash ./scripts/train_vae/train_nd_vae/train_rgbd_vae_webdatasets.sh \ model.params.ckpt_path=${pretained-VAE weights} \
data.params.train.params.curls='path_laion/{00000..${:5 end_id}}.tar' \
--gpus 0,1,2,3,4,5,6,7
After training and get Normal-Depth-VAE
Model or you could download it from ND-VAE
# step 1
export SD-MODEL-PATH=/path/to/sd-1.5
bash scripts/train_normald_sd/txt_cond/web_datasets/train_normald_webdatasets.sh --gpus 0,1,2,3,4,5,6,7 \
model.params.first_stage_ckpts=${Normal-Depth-VAE} model.params.ckpt_path=${SD-MODEL-PATH} \
data.params.train.params.curls='path_laion/{00000..${:5 end_id}}.tar'
# step 2 modify your step_weights path in ./configs/stable-diffusion/normald/sd_1_5/txt_cond/web_datasets/laion_2b_step2.yaml
bash scripts/train_normald_sd/txt_cond/web_datasets/train_normald_webdatasets_step2.sh --gpus 0,1,2,3,4,5,6,7 \
model.params.first_stage_ckpts=${Normal-Depth-VAE} \
model.params.ckpt_path=${pretrained-step-weights} \
data.params.train.params.curls='path_laion/{00000..${:5 end_id}}.tar'
After training and get Normal-Depth-Diffusion
Model or you could download it from ND,
We provide two versions of MultiView-Normal-Depth Diffusion Model
a. without VAE Denoise b. with VAE Denoise
In current version, we provide w/o VAE denoise
# a. Training Without VAE version
bash ./scripts/train_normald_sd/txt_cond/objaverse/objaverse_finetune_wovae_mvsd-4.sh --gpus 0,1,2,3,4,5,6,7, \
model.params.ckpt_path=${Normal-Depth-Diffusion}
# b. Training with VAE version
bash ./scripts/train_normald_sd/txt_cond/objaverse/objaverse_finetune_mvsd-4.sh --gpus 0,1,2,3,4,5,6,7, \
model.params.ckpt_path=${Normal-Depth-Diffusion}
After training and get Normal-Depth-Diffusion
Model or you could download it from ND,
bash scripts/train_abledo/objaverse/objaverse_finetune_mvsd-4.sh --gpus 0,1,2,3,4,5,6,7, model.params.ckpt_path=${Normal-Depth-Diffusion}
We have intensively borrow codes from the following repositories. Many thanks to the authors for sharing their codes.
@article{qiu2023richdreamer,
title={RichDreamer: A Generalizable Normal-Depth Diffusion Model for Detail Richness in Text-to-3D},
author={Lingteng Qiu and Guanying Chen and Xiaodong Gu and Qi zuo and Mutian Xu and Yushuang Wu and Weihao Yuan and Zilong Dong and Liefeng Bo and Xiaoguang Han},
year={2023},
journal = {arXiv preprint arXiv:2311.16918}
}