Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

FIX-#1927: Fix performance issue related to sparse attribute access #2318

Merged
merged 1 commit into from
Oct 30, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
111 changes: 111 additions & 0 deletions modin/pandas/accessor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
# Licensed to Modin Development Team under one or more contributor license agreements.
# See the NOTICE file distributed with this work for additional information regarding
# copyright ownership. The Modin Development Team licenses this file to you under the
# Apache License, Version 2.0 (the "License"); you may not use this file except in
# compliance with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software distributed under
# the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF
# ANY KIND, either express or implied. See the License for the specific language
# governing permissions and limitations under the License.

import pandas
from pandas.core.arrays.sparse.dtype import SparseDtype

from modin.utils import _inherit_docstrings


class BaseSparseAccessor:
_validation_msg = "Can only use the '.sparse' accessor with Sparse data."

def __init__(self, data=None):
self._parent = data
self._validate(data)

def _validate(self, data):
raise NotImplementedError
dchigarev marked this conversation as resolved.
Show resolved Hide resolved

def _default_to_pandas(self, op, *args, **kwargs):
return self._parent._default_to_pandas(
lambda parent: op(parent.sparse, *args, **kwargs)
)


@_inherit_docstrings(pandas.core.arrays.sparse.accessor.SparseFrameAccessor)
class SparseFrameAccessor(BaseSparseAccessor):
def _validate(self, data):
dchigarev marked this conversation as resolved.
Show resolved Hide resolved
dtypes = data.dtypes
if not all(isinstance(t, SparseDtype) for t in dtypes):
raise AttributeError(self._validation_msg)

@property
def density(self):
return self._parent._default_to_pandas(pandas.DataFrame.sparse).density

@classmethod
def from_spmatrix(cls, data, index=None, columns=None):
return cls._default_to_pandas(
pandas.DataFrame.sparse.from_spmatrix, data, index=index, columns=columns
)

def to_dense(self):
return self._default_to_pandas(pandas.DataFrame.sparse.to_dense)

def to_coo(self):
return self._default_to_pandas(pandas.DataFrame.sparse.to_coo)


@_inherit_docstrings(pandas.core.arrays.sparse.accessor.SparseAccessor)
class SparseAccessor(BaseSparseAccessor):
def _validate(self, data):
if not isinstance(data.dtype, SparseDtype):
raise AttributeError(self._validation_msg)

@property
def density(self):
return self._parent._default_to_pandas(pandas.Series.sparse).density

@property
def fill_value(self):
return self._parent._default_to_pandas(pandas.Series.sparse).fill_value

@property
def npoints(self):
return self._parent._default_to_pandas(pandas.Series.sparse).npoints

@property
def sp_values(self):
return self._parent._default_to_pandas(pandas.Series.sparse).sp_values
dchigarev marked this conversation as resolved.
Show resolved Hide resolved

@classmethod
def from_coo(cls, A, dense_index=False):
return cls._default_to_pandas(
pandas.Series.sparse.from_coo, A, dense_index=dense_index
)

def to_coo(self, row_levels=(0,), column_levels=(1,), sort_labels=False):
return self._default_to_pandas(
pandas.Series.sparse.to_coo,
row_levels=row_levels,
column_levels=column_levels,
sort_labels=sort_labels,
)

def to_dense(self):
return self._default_to_pandas(pandas.Series.sparse.to_dense)


@_inherit_docstrings(pandas.core.accessor.CachedAccessor)
class CachedAccessor:
def __init__(self, name: str, accessor) -> None:
self._name = name
self._accessor = accessor

def __get__(self, obj, cls):
if obj is None:
return self._accessor
accessor_obj = self._accessor(obj)
object.__setattr__(obj, self._name, accessor_obj)
return accessor_obj
5 changes: 2 additions & 3 deletions modin/pandas/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@
from .series import Series
from .base import BasePandasDataset, _ATTRS_NO_LOOKUP
from .groupby import DataFrameGroupBy
from .accessor import CachedAccessor, SparseFrameAccessor


@_inherit_docstrings(pandas.DataFrame, excluded=[pandas.DataFrame.__init__])
Expand Down Expand Up @@ -1594,9 +1595,7 @@ def set_index(
if not inplace:
return frame

@property
def sparse(self):
return self._default_to_pandas(pandas.DataFrame.sparse)
sparse = CachedAccessor("sparse", SparseFrameAccessor)

def squeeze(self, axis=None):
axis = self._get_axis_number(axis) if axis is not None else None
Expand Down
5 changes: 2 additions & 3 deletions modin/pandas/series.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@
from .base import BasePandasDataset, _ATTRS_NO_LOOKUP
from .iterator import PartitionIterator
from .utils import from_pandas, is_scalar
from .accessor import CachedAccessor, SparseAccessor


@_inherit_docstrings(pandas.Series, excluded=[pandas.Series.__init__])
Expand Down Expand Up @@ -1187,9 +1188,7 @@ def sort_values(
result._query_compiler, inplace=inplace
)

@property
def sparse(self):
return self._default_to_pandas(pandas.Series.sparse)
sparse = CachedAccessor("sparse", SparseAccessor)

def squeeze(self, axis=None):
if axis is not None:
Expand Down
13 changes: 10 additions & 3 deletions modin/pandas/test/dataframe/test_default.py
Original file line number Diff line number Diff line change
Expand Up @@ -1151,6 +1151,13 @@ def test___bool__(data):
eval_general(*create_test_dfs(data), lambda df: df.__bool__())


@pytest.mark.parametrize("data", test_data_values, ids=test_data_keys)
def test_hasattr_sparse(data):
eval_general(*create_test_dfs(data), lambda df: hasattr(df, "sparse"))
@pytest.mark.parametrize(
"is_sparse_data", [True, False], ids=["is_sparse", "is_not_sparse"]
)
def test_hasattr_sparse(is_sparse_data):
modin_df, pandas_df = (
create_test_dfs(pandas.arrays.SparseArray(test_data["float_nan_data"].values()))
if is_sparse_data
else create_test_dfs(test_data["float_nan_data"])
)
eval_general(modin_df, pandas_df, lambda df: hasattr(df, "sparse"))
1 change: 1 addition & 0 deletions modin/pandas/test/test_api.py
Original file line number Diff line number Diff line change
Expand Up @@ -48,6 +48,7 @@ def test_top_level_api_equality():
"DEFAULT_NPARTITIONS",
"iterator",
"series",
"accessor",
"base",
"utils",
"dataframe",
Expand Down
23 changes: 12 additions & 11 deletions modin/pandas/test/test_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -4397,17 +4397,18 @@ def test_encode(data, encoding_type):
df_equals(modin_result, pandas_result)


@pytest.mark.parametrize("data", test_string_data_values, ids=test_string_data_keys)
def test_hasattr_sparse(data):
modin_series, pandas_series = create_test_series(data)
try:
pandas_result = hasattr(pandas_series, "sparse")
except Exception as e:
with pytest.raises(type(e)):
hasattr(modin_series, "sparse")
else:
modin_result = hasattr(modin_series, "sparse")
assert modin_result == pandas_result
@pytest.mark.parametrize(
"is_sparse_data", [True, False], ids=["is_sparse", "is_not_sparse"]
)
def test_hasattr_sparse(is_sparse_data):
modin_df, pandas_df = (
create_test_series(
pandas.arrays.SparseArray(test_data["float_nan_data"].values())
)
if is_sparse_data
else create_test_series(test_data["float_nan_data"])
)
eval_general(modin_df, pandas_df, lambda df: hasattr(df, "sparse"))


@pytest.mark.parametrize(
Expand Down